Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Gene Ther ; 6(9): 1617-25, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10490772

ABSTRACT

The nonreplicating vaccinia virus MVA/T7 RNA polymerase hybrid system was tested with Petri dish electroporation for ectopic gene expression in human umbilical vein endothelial cells (HUVECs). A range of voltages (150-450 V), pulse times (10-40 ms), DNA concentrations (0-20 microg/ml) and infection levels (0-15 multiplicities of infection) were tested for effects on T7 promoter-directed chloramphenicol acetyltransferase (CAT) activity after MVA/T7RP infection. MVA/T7RP-directed expression was transient and at least 10 000-fold in excess of nonviral, cytomegalovirus enhancer-directed expression. Use of a Petri dish electrode with the MVA/T7RP system showed increased viability compared with a cuvette electrode. Overexpression of interleukin-2 alpha subunit (IL2Ralpha) pro- tein followed by anti-IL2Ralpha-directed magnetic immunoaffinity cell sorting allowed isolation of the transfected population. The high fidelity of cellular sorting was shown by segregation of CAT activity in the IL2Ralpha-sorted population after transfection of T7 promoter-directed bicistronic IL2Ralpha/CAT DNA. Expression of a panel of proteins including the fluorophore green fluorescent protein as detected by fluorescence microscopy and p21cip1, p27kip1, pp60c-src, FGF-1, pRb, p107 and pRb2/p130 proteins was also achieved. Thus, use of the nonreplicating vaccinia virus/T7 RNA polymerase expression system with Petri dish electroporation is feasible for certain applications for the manipulation of HUVECs by gene transfer.


Subject(s)
DNA-Directed RNA Polymerases , Electroporation , Endothelium, Vascular/metabolism , Gene Transfer Techniques , Vaccinia virus/genetics , Bacteriophage T7 , Chloramphenicol O-Acetyltransferase/metabolism , Gene Expression , Green Fluorescent Proteins , Humans , Immunoblotting , Luminescent Proteins/genetics , Microscopy, Fluorescence , Receptors, Interleukin-2/genetics , Umbilical Veins , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...