Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(47): e202209305, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36074340

ABSTRACT

Metallosupramolecular hosts of nanoscopic dimensions, which are able to serve as selective receptors and catalysts, are usually composed of only one type of organic ligand, restricting diversity in terms of cavity shape and functional group decoration. We report a series of heteroleptic [Pd2 A2 B2 ] coordination cages that self-assemble from a library of shape complementary bis-monodentate ligands in a non-statistical fashion. Ligands A feature an inward pointing NH function, able to engage in hydrogen bonding and amenable to being functionalized with amide and alkyl substituents. Ligands B comprise tricyclic aromatic backbones of different shape and electronic situation. The obtained heteroleptic coordination cages were investigated for their ability to bind phosphate diesters as guests. All-atom molecular dynamics (MD) simulations in explicit solvent were conducted to understand the mechanistic relationships behind the experimentally determined guest affinities.


Subject(s)
Esters , Phosphates , Models, Molecular , Ligands , Hydrogen Bonding
2.
J Am Chem Soc ; 143(4): 1773-1778, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33476512

ABSTRACT

The design of structurally defined heteroleptic coordination cages is a challenging task, and only few examples are known to date. Here we describe a selection approach that allowed the identification of a novel hexanuclear Pd cage containing two types of dipyridyl ligands. A virtual combinatorial library of [PdnL2n](BF4)2n complexes was prepared by mixing six different dipyridyl ligands with substoichiometric amounts of [Pd(CH3CN)4](BF4)2. Analysis of the equilibrated reaction mixture revealed the preferential formation of a heteroleptic [Pd6L6L'6](BF4)12 assembly. The complex was prepared on a preparative scale by a targeted synthesis, and its structure was elucidated by single-crystal X-ray diffraction. It features an unprecedented trigonal-antiprismatic cage structure with two triangular Pd3L3 macrocycles bridged by six L' ligands. A related but significantly larger [Pd6L6L'6](BF4)12 cage was obtained by using metalloligands instead of organic dipyridyl ligands.

3.
Dalton Trans ; 48(29): 11070-11075, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31251313

ABSTRACT

We report a complex system of heteroleptic coordination cages based on the combination of four bis-monodentate ligands whose backbones only slightly differ in shape and length. cis-[Pd2L2L'2] assemblies cleanly form after addition of PdII cations to a 1 : 1 mixture of two shape-complementary ligands, each. When three or even all four ligands are used in combination, the unambiguous discrimination of all individual species in the product mixture becomes difficult by conventional NMR spectroscopic and mass spectrometric methods. Due to steric constraints, the system is restricted to the formation of ten different coordination cages in total, two of which are isomeric. We show that high-resolution trapped ion mobility mass spectrometry (TIMS) allows the clear differentiation of all ten species. Observed size trends could be readily reproduced by the calculation of theoretical values for collisional cross sections (CCS) from geometry-optimized models.

4.
Dalton Trans ; 48(19): 6564-6570, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31012889

ABSTRACT

Flexible metal-organic frameworks (MOFs) exhibit large potential as next-generation materials in areas such as gas sensing, gas separation and mechanical damping. By using a mixed metal approach, we report how the stimuli reponsive phase transition of flexible pillared-layered MOFs can be tuned over a wide range. Different Cu2+ to Zn2+ metal ratios are incorporated into the materials by using a simple solvothermal approach. The properties of the obtained materials are probed by differential scanning calorimetry and CO2 sorption measurements, revealing stimuli responsive behaviour as a function of metal ratio. Pair distribution functions derived from X-ray total scattering experiments suggest a distortion of the M2 paddlewheel as a function of the Cu content. We rationalize these phenomena by the different distortion energies of Cu2+ and Zn2+ ions to deviate from the square pyramidal structure of the relaxed paddlewheel node. Our work follows on from the large interest in tuning and understanding the materials properties of flexible MOFs, highlighting the large number of parameters that can be used for the targeted manipulation and design of properties of these fascinating materials.

5.
Dalton Trans ; 46(25): 8198-8203, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28621374

ABSTRACT

A series of four Zn2+ metal-organic frameworks containing functionalised isophthalate linkers and 4,4'-bipyridine pillars have been prepared and characterised. Isophthalates which contain -OC3H2n+1 alkoxy side chains (with n = 1, 2 or 3) form frameworks with a 3D pillared-layer topology instead of the typical 2D layer topology of the renowned coordination polymers with an interdigitated structure (CIDs), which is found for shorter -OC2H5 side chains. The gas adsorption properties of the materials were analysed using N2, CO2 and O2 adsorption measurements at low temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...