Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
ACS Infect Dis ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873918

ABSTRACT

Shiga toxins are the main virulence factors of Shiga toxin producing E. coli (STEC) and S. dysenteriae. There is no effective therapy to counter the disease caused by these toxins. The A1 subunits of Shiga toxins bind the C-termini of ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. The ribosome binding site of Shiga toxin 2 has not been targeted by small molecules. We screened a fragment library against the A1 subunit of Shiga toxin 2 (Stx2A1) and identified a fragment, BTB13086, which bound at the ribosome binding site and mimicked the binding mode of the P-stalk proteins. We synthesized analogs of BTB13086 and identified a series of molecules with similar affinity and inhibitory activity. These are the first compounds that bind at the ribosome binding site of Stx2A1 and inhibit activity. These compounds hold great promise for further inhibitor development against STEC infection.

2.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895323

ABSTRACT

Background: Lipid metabolic reprogramming is an emerging characteristic of endocrine therapy (ET) resistance in estrogen receptor-positive (ER+) breast cancer. We explored changes in lipid metabolism in ER+ breast cancer cell lines following acquired resistance to common endocrine treatments and tested efficacy of an inhibitor in current clinical trials. Methods: We derived ER+ breast cancer cell lines resistant to Tamoxifen (TamR), Fulvestrant (FulvR), and long-term estrogen withdrawal (EWD). Parental and ET resistant cells were subjected to global gene expression and unbiased lipidomic profiling. Lipid storage changes were assessed via neutral lipid staining with Oil Red O (ORO). The impact of the fatty acid synthase (FASN) inhibitor TVB-2640 on the growth and lipid storage of these cell lines was evaluated. Additionally, 13 C 2 -acetate tracing was used to examine FASN activity in parental and ET resistant cells in the absence or presence of TVB-2640. Results: Compared to parental cells, lipid metabolism and processing pathways were notably enriched in ET resistant cells, which exhibited distinct lipidomes characterized by increased triglyceride and polyunsaturated FA (PUFA) species. ET-resistant cells displayed enhanced cytoplasmic lipid droplets. Increased FASN protein levels were observed in ET-resistant cells, and TVB-2640 effectively inhibited FASN activity. FASN inhibition reduced cell growth in some but not all cell lines and ET resistance types and did not correlate to lipid storage reduction. 13 C 2 -acetate tracing confirmed reduced palmitate synthesis and enhanced PUFA synthesis in ET-resistant cells, especially when combined with FulvR. Conclusion: ET resistant breast cancer cells exhibit a shift towards enhanced triglyceride storage and complex lipids enriched with PUFA acyl chains. While targeting FASN alongside ET may not fully overcome ET resistance in our models, focusing on the unique lipid metabolic dependencies, such as PUFA pathways, may present a promising alternative strategy for treating ET resistant breast cancer.

3.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928386

ABSTRACT

Adipose tissue, a central player in energy balance, exhibits significant metabolic flexibility that is often compromised in obesity and type 2 diabetes (T2D). Mitochondrial dysfunction within adipocytes leads to inefficient lipid handling and increased oxidative stress, which together promote systemic metabolic disruptions central to obesity and its complications. This review explores the pivotal role that mitochondria play in altering the metabolic functions of the primary adipocyte types, white, brown, and beige, within the context of obesity and T2D. Specifically, in white adipocytes, these dysfunctions contribute to impaired lipid processing and an increased burden of oxidative stress, worsening metabolic disturbances. Conversely, compromised mitochondrial function undermines their thermogenic capabilities, reducing the capacity for optimal energy expenditure in brown adipocytes. Beige adipocytes uniquely combine the functional properties of white and brown adipocytes, maintaining morphological similarities to white adipocytes while possessing the capability to transform into mitochondria-rich, energy-burning cells under appropriate stimuli. Each type of adipocyte displays unique metabolic characteristics, governed by the mitochondrial dynamics specific to each cell type. These distinct mitochondrial metabolic phenotypes are regulated by specialized networks comprising transcription factors, co-activators, and enzymes, which together ensure the precise control of cellular energy processes. Strong evidence has shown impaired adipocyte mitochondrial metabolism and faulty upstream regulators in a causal relationship with obesity-induced T2D. Targeted interventions aimed at improving mitochondrial function in adipocytes offer a promising therapeutic avenue for enhancing systemic macronutrient oxidation, thereby potentially mitigating obesity. Advances in understanding mitochondrial function within adipocytes underscore a pivotal shift in approach to combating obesity and associated comorbidities. Reigniting the burning of calories in adipose tissues, and other important metabolic organs such as the muscle and liver, is crucial given the extensive role of adipose tissue in energy storage and release.


Subject(s)
Diabetes Mellitus, Type 2 , Energy Metabolism , Mitochondria , Obesity , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Obesity/metabolism , Obesity/pathology , Mitochondria/metabolism , Animals , Adipocytes/metabolism , Adipose Tissue/metabolism , Oxidative Stress , Thermogenesis
4.
Redox Biol ; 73: 103189, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788541

ABSTRACT

Age-related endothelial dysfunction is a pivotal factor in the development of cardiovascular diseases, stemming, at least in part, from mitochondrial dysfunction and a consequential increase in oxidative stress. These alterations are central to the decline in vascular health seen with aging, underscoring the urgent need for interventions capable of restoring endothelial function for preventing cardiovascular diseases. Dietary interventions, notably time-restricted feeding (TRF), have been identified for their anti-aging effects on mitochondria, offering protection against age-associated declines in skeletal muscle and other organs. Motivated by these findings, our study aimed to investigate whether TRF could similarly exert protective effects on endothelial health in the vasculature, enhancing mitochondrial function and reducing oxidative stress. To explore this, 12-month-old C57BL/6 mice were placed on a TRF diet, with food access limited to a 6-h window daily for 12 months. For comparison, we included groups of young mice and age-matched controls with unrestricted feeding. We evaluated the impact of TRF on endothelial function by measuring acetylcholine-induced vasorelaxation of the aorta. Mitochondrial health was assessed using fluororespirometry, and vascular reactive oxygen species (ROS) production was quantified with the redox-sensitive dye dihydroethidium. We also quantified 4-hydroxynonenal (4-HNE) levels, a stable marker of lipid peroxidation, in the aorta using ELISA. Our findings demonstrated that aged mice on a standard diet exhibited significant impairments in aortic endothelial relaxation and mitochondrial function, associated with elevated vascular oxidative stress. Remarkably, the TRF regimen led to substantial improvements in these parameters, indicating enhanced endothelial vasorelaxation, better mitochondrial function, and reduced oxidative stress in the aortas of aged mice. This investigation establishes a vital foundation, paving the way for subsequent clinical research aimed at exploring the cardiovascular protective benefits of intermittent fasting.


Subject(s)
Aging , Aorta , Endothelium, Vascular , Mitochondria , Oxidative Stress , Reactive Oxygen Species , Vasodilation , Animals , Mice , Mitochondria/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Reactive Oxygen Species/metabolism , Aorta/metabolism , Aorta/drug effects , Vasodilation/drug effects , Aging/metabolism , Male , Mice, Inbred C57BL , Aldehydes/metabolism , Aldehydes/pharmacology
5.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746285

ABSTRACT

Lyme disease is a tick-borne, multisystem infection caused by the spirochete, Borreliella burgdorferi . Although antibodies have been implicated in the resolution of Lyme disease, the specific B cell epitopes targeted during human infections remain largely unknown. In this study, we characterized and defined the structural epitope of a patient-derived bactericidal monoclonal IgG ("B11") against Outer surface protein C (OspC), a homodimeric lipoprotein necessary for B. burgdorferi tick-mediated transmission and early-stage colonization of vertebrate hosts. High-resolution epitope mapping was accomplished through hydrogen deuterium exchange-mass spectrometry (HDX-MS) and X-ray crystallography. Structural analysis of B11 Fab-OspC A complexes revealed the B11 Fabs associated in a 1:1 stoichiometry with the lateral faces of OspC A homodimers such that the antibodies are essentially positioned perpendicular to the spirochete's outer surface. B11's primary contacts reside within the membrane proximal regions of α-helices 1 and 6 and adjacent loops 5 and 6 in one OspC A monomer. In addition, B11 spans the OspC A dimer interface, engaging opposing α-helix 1', α-helix 2', and loop 2-3' in the second OspC A monomer. The B11-OspC A structure is reminiscent of the recently solved mouse transmission blocking monoclonal IgG B5 in complex with OspC A , indicating a mode of engagement with OspC that is conserved across species. In conclusion, we provide the first detailed insight into the interaction between a functional human antibody and an immunodominant Lyme disease antigen long considered an important vaccine target.

6.
Cell Rep ; 43(6): 114288, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38814782

ABSTRACT

Lipids have emerged as potent regulators of immune cell function. In the skin, adipocyte lipolysis increases the local pool of free fatty acids and is essential for coordinating early macrophage inflammation following injury. Here, we investigate G-protein-coupled receptor 84 (GPR84), a medium-chain fatty acid (MCFA) receptor, for its potential to propagate pro-inflammatory signaling after skin injury. GPR84 signaling was identified as a key component of regulating myeloid cell numbers and subsequent tissue repair through in vivo administration of a pharmacological antagonist and the MCFA decanoic acid. We found that impaired injury-induced dermal adipocyte lipolysis is a hallmark of diabetes, and lipidomic analysis demonstrated that MCFAs are significantly reduced in diabetic murine wounds. Furthermore, local administration of decanoic acid rescued myeloid cell numbers and tissue repair during diabetic wound healing. Thus, GPR84 is a readily targetable lipid signaling pathway for manipulating injury-induced tissue inflammation with beneficial effects on acute diabetic healing.


Subject(s)
Diabetes Mellitus, Experimental , Inflammation , Receptors, G-Protein-Coupled , Skin , Wound Healing , Animals , Receptors, G-Protein-Coupled/metabolism , Skin/pathology , Skin/metabolism , Skin/injuries , Mice , Inflammation/pathology , Inflammation/metabolism , Wound Healing/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Mice, Inbred C57BL , Male , Signal Transduction , Decanoic Acids/pharmacology , Lipolysis/drug effects , Humans , Adipocytes/metabolism , Myeloid Cells/metabolism
7.
Biomol NMR Assign ; 18(1): 85-91, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642265

ABSTRACT

Ricin is a potent plant toxin that targets the eukaryotic ribosome by depurinating an adenine from the sarcin-ricin loop (SRL), a highly conserved stem-loop of the rRNA. As a category-B agent for bioterrorism it is a prime target for therapeutic intervention with antibodies and enzyme blocking inhibitors since no effective therapy exists for ricin. Ricin toxin A subunit (RTA) depurinates the SRL by binding to the P-stalk proteins at a remote site. Stimulation of the N-glycosidase activity of RTA by the P-stalk proteins has been studied extensively by biochemical methods and by X-ray crystallography. The current understanding of RTA's depurination mechanism relies exclusively on X-ray structures of the enzyme in the free state and complexed with transition state analogues. To date we have sparse evidence of conformational dynamics and allosteric regulation of RTA activity that can be exploited in the rational design of inhibitors. Thus, our primary goal here is to apply solution NMR techniques to probe the residue specific structural and dynamic coupling active in RTA as a prerequisite to understand the functional implications of an allosteric network. In this report we present de novo sequence specific amide and sidechain methyl chemical shift assignments of the 267 residue RTA in the free state and in complex with an 11-residue peptide (P11) representing the identical C-terminal sequence of the ribosomal P-stalk proteins. These assignments will facilitate future studies detailing the propagation of binding induced conformational changes in RTA complexed with inhibitors, antibodies, and biologically relevant targets.


Subject(s)
Nitrogen Isotopes , Nuclear Magnetic Resonance, Biomolecular , Ricin , Ricin/chemistry , Protein Subunits/chemistry , Amino Acid Sequence
8.
Infect Immun ; 92(4): e0008424, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38470113

ABSTRACT

Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.


Subject(s)
Lipoproteins , Lyme Disease , Single-Domain Antibodies , Animals , Dogs , Humans , Lyme Disease Vaccines , Epitopes , Antibodies, Bacterial , Bacterial Vaccines , Bacterial Outer Membrane Proteins , Lyme Disease/prevention & control , Antigens, Surface , Antibodies, Monoclonal
9.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474061

ABSTRACT

Chronic inflammation is a key player in metabolic dysfunction-associated fatty liver disease (MAFLD) progression. Necroptosis, an inflammatory cell death pathway, is elevated in MAFLD patients and mouse models, yet its role is unclear due to the diverse mouse models and inhibition strategies. In our study, we inhibited necroptosis by targeting mixed lineage kinase domain-like pseudokinase (MLKL), the terminal effector of necroptosis, in a high-fat, high-fructose, high-cholesterol (HFHFrHC) mouse model of diet-induced MAFLD. Despite the HFHFrHC diet upregulating MLKL (2.5-fold), WT mice livers showed no increase in necroptosis markers or associated proinflammatory cytokines. Surprisingly, Mlkl-/- mice experienced exacerbated liver inflammation without protection from diet-induced liver damage, steatosis, or fibrosis. In contrast, Mlkl+/- mice showed a significant reduction in these parameters that was associated with elevated Pparα and Pparγ levels. Both Mlkl-/- and Mlkl+/- mice on the HFHFrHC diet resisted diet-induced obesity, attributed to the increased beiging, enhanced oxygen consumption, and energy expenditure due to adipose tissue, and exhibited improved insulin sensitivity. These findings highlight the tissue-specific effects of MLKL on the liver and adipose tissue, and they suggest a dose-dependent effect of MLKL on liver pathology.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Fructose , Protein Kinases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Disease Models, Animal , Diet, High-Fat/adverse effects , Adipose Tissue/metabolism , Inflammation , Cholesterol , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
10.
Am J Physiol Endocrinol Metab ; 326(5): E626-E639, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38536037

ABSTRACT

Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.


Subject(s)
Energy Metabolism , Estradiol , Follicle Stimulating Hormone , Ovariectomy , Rats, Wistar , Animals , Female , Energy Metabolism/drug effects , Rats , Follicle Stimulating Hormone/metabolism , Estradiol/pharmacology , Body Composition/drug effects , Body Weight/drug effects , Ovary/drug effects , Ovary/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Liver/metabolism , Liver/drug effects , Transcriptome/drug effects
11.
Biochemistry ; 63(7): 893-905, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38467020

ABSTRACT

Shiga toxin 2a (Stx2a) is the virulence factor of Escherichia coli (STEC), which is associated with hemolytic uremic syndrome, the leading cause of pediatric kidney failure. The A1 subunit of Stx2a (Stx2A1) binds to the conserved C-terminal domain (CTD) of the ribosomal P-stalk proteins to remove an adenine from the sarcin-ricin loop (SRL) in the 28S rRNA, inhibiting protein synthesis. There are no antidotes against Stx2a or any other ribosome-inactivating protein (RIP). The structural and functional details of the binding of Stx2A1 to the P-stalk CTD are not known. Here, we carry out a deletion analysis of the conserved P-stalk CTD and show that the last eight amino acids (P8) of the P-stalk proteins are the minimal sequence required for optimal affinity and maximal inhibitory activity against Stx2A1. We determined the first X-ray crystal structure of Stx2A1 alone and in complex with P8 and identified the exact binding site. The C-terminal aspartic acid of the P-stalk CTD serves as an anchor, forming key contacts with the conserved arginine residues at the P-stalk binding pocket of Stx2A1. Although the ricin A subunit (RTA) binds to the P-stalk CTD, the last aspartic acid is more critical for the interaction with Stx2A1, indicating that RIPs differ in their requirements for the P-stalk. These results demonstrate that the catalytic activity of Stx2A1 is inhibited by blocking its interactions with the P-stalk, providing evidence that P-stalk binding is an essential first step in the recruitment of Stx2A1 to the SRL for depurination.


Subject(s)
Ricin , Shiga Toxin 2 , Humans , Child , Shiga Toxin 2/analysis , Shiga Toxin 2/metabolism , Ribosomes/metabolism , Ricin/chemistry , Ricin/genetics , Ricin/metabolism , Aspartic Acid , Binding Sites , Peptides/metabolism , Escherichia coli/metabolism
12.
Bioorg Med Chem ; 100: 117614, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38340640

ABSTRACT

Ricin, a category-B agent for bioterrorism, and Shiga toxins (Stxs), which cause food poisoning bind to the ribosomal P-stalk to depurinate the sarcin/ricin loop. No effective therapy exists for ricin or Stx intoxication. Ribosome binding sites of the toxins have not been targeted by small molecules. We previously identified CC10501, which inhibits toxin activity by binding the P-stalk pocket of ricin toxin A subunit (RTA) remote from the catalytic site. Here, we developed a fluorescence polarization assay and identified a new class of compounds, which bind P-stalk pocket of RTA with higher affinity and inhibit catalytic activity with submicromolar potency. A lead compound, RU-NT-206, bound P-stalk pocket of RTA with similar affinity as a five-fold larger P-stalk peptide and protected cells against ricin and Stx2 holotoxins for the first time. These results validate the P-stalk binding site of RTA as a critical target for allosteric inhibition of the active site.


Subject(s)
Ricin , Binding Sites , Peptides/pharmacology , Protein Binding , Ribosomes/metabolism , Ricin/antagonists & inhibitors , Ricin/metabolism
13.
bioRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260537

ABSTRACT

Chronic inflammation is a key player in metabolic dysfunction-associated fatty liver disease (MAFLD) progression. Necroptosis, an inflammatory cell death pathway, is elevated in MAFLD patients and mouse models, yet its role is unclear due to diverse mouse models and inhibition strategies. In our study, we inhibited necroptosis by targeting mixed lineage kinase domain like pseudokinase (MLKL), the terminal effector of necroptosis, in a high-fat, high-fructose, high-cholesterol (HFHFrHC) mouse model of diet-induced MAFLD mouse model. Despite HFHFrHC diet upregulating MLKL (2.5-fold), WT mice livers showed no increase in necroptosis markers or associated proinflammatory cytokines. Surprisingly, Mlkl -/- mice experienced exacerbated liver inflammation without protection from diet-induced liver damage, steatosis, or fibrosis. In contrast, Mlkl +/- mice showed significant reduction in these parameters that was associated with elevated Pparα and Pparγ levels. Both Mlkl -/- and Mlkl +/- mice on HFHFrHC diet resisted diet-induced obesity, attributed to increased beiging, enhanced oxygen consumption and energy expenditure due to adipose tissue, and exhibited improved insulin sensitivity. These findings highlight the tissue specific effects of MLKL on the liver and adipose tissue, and suggest a dose-dependent effect of MLKL on liver pathology.

14.
Article in English | MEDLINE | ID: mdl-38091357

ABSTRACT

PURPOSE: The primary aim of this study was the examination of relationships between students' preadmission achievement, intraphysician assistant (PA) program achievement, and Physician Assistant National Certifying Examination (PANCE) performance using path analysis regression. Second, this study explored the extent to which the theoretical model differed based on several key demographic variables: sex and undergraduate major. METHODS: This retrospective, single-institution study examined data from 2015 to 2022 (n = 322). Analysis included descriptive statistics, bivariate correlations, and path analysis using structural equation modeling to examine direct, indirect, and total effects of all predictors on the primary outcome variable, PANCE. RESULTS: PACKRAT-I demonstrated the largest total effect size on PANCE total score (ß = .45). Total effect size on PANCE was small yet significant for prerequisite grade point average (GPA), Graduate Record Exam verbal and quantitative subscores, a comprehensive didactic cardiology examination, didactic and clinical year GPAs, and End of Rotation examination mean score (ß < .25). The relationship between mean preceptor evaluation score and PANCE was nonsignificant. Subgroup analyses showed differences between female and male in the relationship between several didactic variables and preceptor evaluations. No differences were detected between groups based on undergraduate major. CONCLUSION: This PANCE analysis revealed relationships among pre-PA and intra-PA performance metrics that may subsequently support data-informed strategies for programs to identify at-risk students, aid student success, and support the assessment of curriculum. Future studies should replicate the approach using a larger, multi-institution sample that examines additional preprogram and intraprogram achievement variables.

15.
Biochemistry ; 62(22): 3181-3187, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37903428

ABSTRACT

Monoclonal antibodies, JB4 and SylH3, neutralize ricin toxin (RT) by inhibiting the galactose-specific lectin activity of the B subunit of the toxin (RTB), which is required for cell attachment and entry. It is not immediately apparent how the antibodies accomplish this feat, considering that RTB consists of two globular domains (D1, D2) each divided into three homologous subdomains (α, ß, γ) with the two functional galactosyl-specific carbohydrate recognition domains (CRDs) situated on opposite poles (subdomains 1α and 2γ). Here, we report the X-ray crystal structures of JB4 and SylH3 Fab fragments bound to RTB in the context of RT. The structures revealed that neither Fab obstructed nor induced detectable conformational alterations in subdomains 1α or 2γ. Rather, JB4 and SylH3 Fabs recognize nearly identical epitopes within an ancillary carbohydrate recognition pocket located in subdomain 1ß. Despite limited amino acid sequence similarity between SylH3 and JB4 Fabs, each paratope inserts a Phe side chain from the heavy (H) chain complementarity determining region (CDR3) into the 1ß CRD pocket, resulting in local aromatic stacking interactions that potentially mimic a ligand interaction. Reconciling the fact that stoichiometric amounts of SylH3 and JB4 are sufficient to disarm RTB's lectin activity without evidence of allostery, we propose that subdomain 1ß functions as a "coreceptor" required to stabilize glycan interactions principally mediated by subdomains 1α and 2γ. Further investigation into subdomain 1ß will yield fundamental insights into the large family of R-type lectins and open novel avenues for countermeasures aimed at preventing toxin uptake into vulnerable tissues and cells.


Subject(s)
Ricin , Toxins, Biological , Ricin/chemistry , Ricin/metabolism , Antibodies, Monoclonal , Epitopes , Molecular Conformation , Carbohydrates
16.
Nutrients ; 15(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37892512

ABSTRACT

Men are diagnosed with type 2 diabetes at lower body mass indexes than women; the role of skeletal muscle in this sex difference is poorly understood. Type 2 diabetes impacts skeletal muscle, particularly in females who demonstrate a lower oxidative capacity compared to males. To address mechanistic differences underlying this sex disparity, we investigated skeletal muscle mitochondrial respiration in female and male rats in response to chronic high-fat, high-sugar (HFHS) diet consumption. Four-week-old Wistar Rats were fed a standard chow or HFHS diet for 14 weeks to identify sex-specific adaptations in mitochondrial respirometry and characteristics, transcriptional patterns, and protein profiles. Fat mass was greater with the HFHS diet in both sexes when controlled for body mass (p < 0.0001). Blood glucose and insulin resistance were greater in males (p = 0.01) and HFHS-fed rats (p < 0.001). HFHS-fed males had higher mitochondrial respiration compared with females (p < 0.01 sex/diet interaction). No evidence of a difference by sex or diet was found for mitochondrial synthesis, dynamics, or quality to support the mitochondrial respiration sex/diet interaction. However, transcriptomic analyses indicate sex differences in nutrient handling. Sex-specific differences occurred in PI3K/AKT signaling, PPARα/RXRα, and triacylglycerol degradation. These findings may provide insight into the clinical sex differences in body mass index threshold for diabetes development and tissue-specific progression of insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Rats , Female , Male , Animals , Sucrose/metabolism , Insulin Resistance/physiology , Sex Characteristics , Rats, Wistar , Dietary Fats/metabolism , Diabetes Mellitus, Type 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Diet, High-Fat/adverse effects , Muscle, Skeletal/metabolism , Insulin
17.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37503212

ABSTRACT

Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that is often transmitted to the neonate via breast milk. Postnatal CMV transmission can have negative health consequences for preterm and immunocompromised infants, but any effects on healthy term infants are thought to be benign. Furthermore, the impact of CMV on the composition of the hundreds of bioactive factors in human milk has not been tested. Here, we utilize a cohort of exclusively breastfeeding full term mother-infant pairs to test for differences in the milk transcriptome and metabolome associated with CMV, and the impact of CMV in breast milk on the infant gut microbiome and infant growth. We find upregulation of the indoleamine 2,3- dioxygenase (IDO) tryptophan-to-kynurenine metabolic pathway in CMV+ milk samples, and that CMV+ milk is associated with decreased Bifidobacterium in the infant gut. Our data indicate a complex relationship between milk CMV, milk kynurenine, and infant growth; with kynurenine positively correlated, and CMV viral load negatively correlated, with infant weight-for-length at 1 month of age. These results suggest CMV transmission, CMV-related changes in milk composition, or both may be modulators of full term infant development.

18.
Proteins ; 91(11): 1463-1470, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37455569

ABSTRACT

319-44 is a human monoclonal antibody capable of passively protecting mice against tick-mediated infection with Borreliella burgdorferi, the bacterial genospecies responsible for Lyme disease in North America. In vitro, 319-44 has complement-dependent borreliacidal activity and spirochete agglutinating properties. Here, we report the 2.2 Å-resolution crystal structure of 319-44 Fab fragments in complex with Outer surface protein A (OspA), the ~30 kDa lipoprotein that was the basis of the first-generation Lyme disease vaccine approved in the United States. The 319-44 epitope is focused on OspA ß-strands 19, 20, and 21, and the loops between ß-strands 16-17, 18-19, and 20-21. Contact with loop 20-21 explains competition with LA-2, the murine monoclonal antibody used to estimate serum borreliacidal activities in the first-generation Lyme disease vaccine clinical trials. A high-resolution B-cell epitope map of OspA will accelerate structure-based design of second generation OspA-based vaccines.

19.
Angew Chem Int Ed Engl ; 62(37): e202307091, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37459565

ABSTRACT

ATP-binding cassette (ABC) transporters shuttle diverse substrates across biological membranes. Transport is often achieved through a transition between an inward-facing (IF) and an outward-facing (OF) conformation of the transmembrane domains (TMDs). Asymmetric nucleotide-binding sites (NBSs) are present among several ABC subfamilies and their functional role remains elusive. Here we addressed this question using concomitant NO-NO, Mn2+ -NO, and Mn2+ -Mn2+ pulsed electron-electron double-resonance spectroscopy of TmrAB in a time-resolved manner. This type-IV ABC transporter undergoes a reversible transition in the presence of ATP with a significantly faster forward transition. The impaired degenerate NBS stably binds Mn2+ -ATP, and Mn2+ is preferentially released at the active consensus NBS. ATP hydrolysis at the consensus NBS considerably accelerates the reverse transition. Both NBSs fully open during each conformational cycle and the degenerate NBS may regulate the kinetics of this process.


Subject(s)
ATP-Binding Cassette Transporters , Adenosine Triphosphate , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism , Nucleotides/metabolism , Binding Sites , Protein Domains , Protein Conformation
20.
Am J Clin Nutr ; 117 Suppl 1: S11-S27, 2023 04.
Article in English | MEDLINE | ID: mdl-37173058

ABSTRACT

The goal of Working Group 1 in the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to outline factors influencing biological processes governing human milk secretion and to evaluate our current knowledge of these processes. Many factors regulate mammary gland development in utero, during puberty, in pregnancy, through secretory activation, and at weaning. These factors include breast anatomy, breast vasculature, diet, and the lactating parent's hormonal milieu including estrogen, progesterone, placental lactogen, cortisol, prolactin, and growth hormone. We examine the effects of time of day and postpartum interval on milk secretion, along with the role and mechanisms of lactating parent-infant interactions on milk secretion and bonding, with particular attention to the actions of oxytocin on the mammary gland and the pleasure systems in the brain. We then consider the potential effects of clinical conditions including infection, pre-eclampsia, preterm birth, cardiovascular health, inflammatory states, mastitis, and particularly, gestational diabetes and obesity. Although we know a great deal about the transporter systems by which zinc and calcium pass from the blood stream into milk, the interactions and cellular localization of transporters that carry substrates such as glucose, amino acids, copper, and the many other trace metals present in human milk across plasma and intracellular membranes require more research. We pose the question of how cultured mammary alveolar cells and animal models can help answer lingering questions about the mechanisms and regulation of human milk secretion. We raise questions about the role of the lactating parent and the infant microbiome and the immune system during breast development, secretion of immune molecules into milk, and protection of the breast from pathogens. Finally, we consider the effect of medications, recreational and illicit drugs, pesticides, and endocrine-disrupting chemicals on milk secretion and composition, emphasizing that this area needs much more research attention.


Subject(s)
Lactation , Premature Birth , Animals , Humans , Female , Infant , Infant, Newborn , Pregnancy , Milk/chemistry , Milk, Human , Placenta , Premature Birth/metabolism , Parents
SELECTION OF CITATIONS
SEARCH DETAIL
...