Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 26(6): 2726-2736, 2022 06.
Article in English | MEDLINE | ID: mdl-34882568

ABSTRACT

Diet monitoring is an essential intervention component for a number of diseases, from type 2 diabetes to cardiovascular diseases. However, current methods for diet monitoring are burdensome and often inaccurate. In prior work, we showed that continuous glucose monitors (CGMs) may be used to predict meal macronutrients (e.g., carbohydrates, protein, fat) by analyzing the shape of the post-prandial glucose response. In this study, we examine a number of additional dietary biomarkers in blood by their ability to improve macronutrient prediction, compared to using CGMs alone. For this purpose, we conducted a nutritional study where (n = 10) participants consumed nine different mixed meals with varied but known macronutrient amounts, and we analyzed the concentration of 33 dietary biomarkers (including amino acids, insulin, triglycerides, and glucose) at various times post-prandially. Then, we built machine learning models to predict macronutrient amounts from (1) individual biomarkers and (2) their combinations. We find that the additional blood biomarkers provide complementary information, and more importantly, achieve lower normalized root mean squared error (NRMSE) for the three macronutrients (carbohydrates: 22.9%; protein: 23.4%; fat: 32.3%) than CGMs alone (carbohydrates: 28.9%, t(18) =1.64, p =0.060; protein: 46.4%, t(18) =5.38, p 0.001; fat: 40.0%, t(18) =2.09, p =0.025). Our main conclusion is that augmenting CGMs to measure these additional dietary biomarkers improves macronutrient prediction performance, and may ultimately lead to the development of automated methods to monitor nutritional intake. This work is significant to biomedical research as it provides a potential solution to the long-standing problem of diet monitoring, facilitating new interventions for a number of diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Dietary Carbohydrates , Biomarkers , Blood Glucose/metabolism , Diet , Dietary Fats/metabolism , Dietary Proteins/metabolism , Glucose , Humans , Insulin , Meals/physiology , Nutrients
2.
Clin Nutr ; 40(8): 5020-5029, 2021 08.
Article in English | MEDLINE | ID: mdl-34365036

ABSTRACT

BACKGROUND: The amount of the macronutrients protein and carbohydrate (CHO) in a mixed meal is known to affect each other's digestion, absorption, and subsequent metabolism. While the effect of the amount of dietary protein and fat on the glycemic response is well studied, the ability of postprandial plasma amino acid patterns to predict the meal composition is unknown. OBJECTIVE: To study the postprandial plasma amino acid patterns in relation to the protein, CHO, and fat content of different mixed meals and to investigate if these patterns can predict the macronutrient meal composition. DESIGN: Ten older adults were given 9 meals with 3 different levels (low, medium, and high) of protein, CHO, and fat in different combinations, taking the medium content as that of a standardized western meal. We monitored the postprandial plasma response for amino acids, glucose, insulin, and triglycerides for 8 h and the areas under the curve (AUC) were subsequently calculated. Multiple regression analysis was performed to determine if amino acid patterns could predict the meal composition. RESULTS: Increasing meal CHO content reduced the postprandial plasma response of several amino acids including all branched chain amino acids (BCAA) (leucine; q < 0.0001, isoleucine; q = 0.0035, valine; q = 0.0022). The plasma BCAA patterns after the meal significantly predicted the meal's CHO content (leucine; p < 0.0001, isoleucine; p = 0.0003, valine; p = 0.0008) along with aspartate (p < 0.0001), tyrosine (p < 0.0001), methionine (p = 0.0159) and phenylalanine (p = 0.0332). Plasma citrulline predicted best the fat content of the meal (p = 0.0024). CONCLUSIONS: The postprandial plasma BCAA patterns are lower with increasing meal CHO content and are strong predictors of a mixed meal protein and CHO composition, as are plasma citrulline for the fat content. We hypothesize that postprandial plasma amino acid concentrations can be used to predict the meal's macronutrient composition.


Subject(s)
Amino Acids, Branched-Chain/blood , Dietary Carbohydrates/blood , Meals/physiology , Postprandial Period , Aged , Amino Acids/blood , Blood Glucose/analysis , Dietary Fats/blood , Dietary Proteins/blood , Eating/physiology , Female , Healthy Volunteers , Humans , Insulin/blood , Male , Predictive Value of Tests , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...