Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 33(1): e4857, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38058248

ABSTRACT

The 3C-like protease (3CLpro ) is crucial to the replication of SARS-CoV-2, the causative agent of COVID-19, and is the target of several successful drugs including Paxlovid and Xocova. Nevertheless, the emergence of viral resistance underlines the need for alternative drug strategies. 3CLpro only functions as a homodimer, making the protein-protein interface an attractive drug target. Dimerization is partly mediated by a conserved glycine at position 11. However, some naturally occurring SARS-CoV-2 sequences contain a serine at this position, potentially disrupting the dimer. We have used concentration-dependent activity assays and mass spectrometry to show that indeed the G11S mutation reduces the stability of the dimer by 600-fold. This helps to set a quantitative benchmark for the minimum potency required of any future protein-protein interaction inhibitors targeting 3CLpro and raises interesting questions regarding how coronaviruses bearing such weakly dimerizing 3CLpro enzymes are capable of replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Peptide Hydrolases/genetics , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Mutation , Antiviral Agents/chemistry
2.
Eur J Med Chem ; 229: 114046, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34995923

ABSTRACT

Severe diseases such as the ongoing COVID-19 pandemic, as well as the previous SARS and MERS outbreaks, are the result of coronavirus infections and have demonstrated the urgent need for antiviral drugs to combat these deadly viruses. Due to its essential role in viral replication and function, 3CLpro (main coronaviruses cysteine-protease) has been identified as a promising target for the development of antiviral drugs. Previously reported SARS-CoV 3CLpro non-covalent inhibitors were used as a starting point for the development of covalent inhibitors of SARS-CoV-2 3CLpro. We report herein our efforts in the design and synthesis of submicromolar covalent inhibitors when the enzymatic activity of the viral protease was used as a screening platform.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Animals , Drug Design , High-Throughput Screening Assays , Humans , Virus Replication/drug effects
3.
PLoS One ; 15(7): e0227529, 2020.
Article in English | MEDLINE | ID: mdl-32730337

ABSTRACT

The pretreatment of biomass remains a critical requirement for bio-renewable fuel production from lignocellulose. Although current processes primarily involve chemical and physical approaches, the biological breakdown of lignin using enzymes and microorganisms is quickly becoming an interesting eco-friendly alternative to classical processes. As a result, bioprospection of wild fungi from naturally occurring lignin-rich sources remains a suitable method to uncover and isolate new species exhibiting ligninolytic activity. In this study, wild species of white rot fungi were collected from Colombian forests based on their natural wood decay ability and high capacity to secrete oxidoreductases with high affinity for phenolic polymers such as lignin. Based on high activity obtained from solid-state fermentation using a lignocellulose source from oil palm as matrix, we describe the isolation and whole-genome sequencing of Dictyopanus pusillus, a wild basidiomycete fungus exhibiting ABTS oxidation as an indication of laccase activity. Functional characterization of a crude enzymatic extract identified laccase activity as the main enzymatic contributor to fungal extracts, an observation supported by the identification of 13 putative genes encoding for homologous laccases in the genome. To the best of our knowledge, this represents the first report of an enzymatic extract exhibiting laccase activity in the Dictyopanus genera, offering means to exploit this species and its enzymes for the delignification process of lignocellulosic by-products from oil palm.


Subject(s)
Agaricales/genetics , Genome, Fungal , Lignin/metabolism , Palm Oil/metabolism , Agaricales/classification , Agaricales/enzymology , Biomass , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Laccase/genetics , Laccase/metabolism , Oxidation-Reduction , Phylogeny , Temperature , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...