Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open Sport Exerc Med ; 7(2): e001137, 2021.
Article in English | MEDLINE | ID: mdl-34221445

ABSTRACT

OBJECTIVE: To assess the diagnostic accuracy of antigen compared with reverse transcriptase (RT)-PCR testing in an asymptomatic athlete screening programme and to monitor infection in college athletes. METHODS: Quidel Sofia-2 SARS-CoV-2 Antigen Tests were performed daily before sports participation for football, basketball, wrestling and water polo from 29 September 2020 to 28 February 2021. Paired RT-PCR and antigen tests were performed at least once a week. Positive antigen tests were confirmed with RT-PCR. RESULTS: 81 175 antigen and 42 187 RT-PCR tests were performed, including 23 462 weekly paired antigen/RT-PCR screening tests in 1931 athletes. One hundred and seventy-two athletes had a positive screening RT-PCR (0.4%), of which 83 (48%) occurred on paired testing days. The sensitivity of antigen tests varied with the frequency of RT-PCR testing and prevalence of COVID-19. The sensitivity of antigen testing was 35.7% (95% CI: 17% to 60%) and specificity 99.8% (95% CI: 99.7% to 99.9%) with once-a-week RT-PCR testing after adjusting for school prevalence. Daily antigen testing was similar to RT-PCR testing two to three times a week in identifying infection. Antigen testing identified infection before the next scheduled PCR on 89 occasions and resulted in 234 days where potentially infectious athletes were isolated before they would have been isolated with RT-PCR testing alone. Two athletic-related outbreaks occurred; 86% of total infections were community acquired. CONCLUSION: Antigen testing has high specificity with a short turnaround time but is not as sensitive as RT-PCR. Daily antigen testing or RT-PCR testing two to three times a week is similar. There are benefits and drawbacks to each testing approach.

2.
Curr Drug Targets ; 18(5): 605-616, 2017.
Article in English | MEDLINE | ID: mdl-28017125

ABSTRACT

In nature, pathogenic parasite species with different susceptibility patterns of antiparasitic drugs abound. In this sense, natural products derived from plants are a potency for drugs with potential antiparasitic activity. Unfortunately, there are many metabolites and studying all of them would be costly in terms of money and resources. To this end, theoretical studies such as QSAR models could be useful. These, for the most part, predict the biological activity of the drugs against a single species of parasite. Consequently, foretell the probability with which a drug is active against many different species with a single QSAR model is an important achievement. This review consists of three parts: the first part is a review of metabolites found in nature that have antiparasitic activity, in particular the antiprotozoal (Leishmania and Trypanosoma); the second part includes a review of theoretical studies looking for a model that predicts the antiprotozoal activity of natural products; the third and final part concerns the study of theoretical models focused on the interaction between drug and receptor, analyzing new metabolites with antiprotozoal activity.


Subject(s)
Antiprotozoal Agents/chemistry , Biological Products/chemistry , Computational Biology/methods , Antiprotozoal Agents/pharmacology , Biological Products/pharmacology , Computer Simulation , Humans , Models, Molecular , Quantitative Structure-Activity Relationship
3.
Med Chem ; 13(2): 137-148, 2017.
Article in English | MEDLINE | ID: mdl-27527618

ABSTRACT

BACKGROUND: We designed hybrid molecules between propamidine and benzimidazole in order to retain the antiprotozoal action, but decreasing the toxic effect of the molecule. OBJECTIVE: Design and prepare 12 hybrids for testing their antiparasitic effect over three protozoa: Giardia intestinalis, Trichomonas vaginalis and Leishmania mexicana, as well as conduct several in silico simulations such as toxicological profile, molecular docking and molecular dynamics in order to understand their potential mode of action. METHODS: Hybrids 1-3, 6-9 and 12 were obtained using a chemical pathway previously reported. Compounds 4, 5, 10 and 11 were prepared using a one-pot reduction-cyclization reaction. The in vitro antiparasitic and cytotoxic activities of these compounds were conducted. It was calculated several properties such as toxicity, PK behavior, as well as docking studies and molecular dynamics of the most active compound performed in a DNA sequence dodecamer in comparison with propamidine. RESULTS: Compound 2 was 183, 127 and 202 times more active against G. intestinalis than metronidazole, pentamidine and propamidine. It was eleven times more active than pentamidine against L. mexicana. This compound showed low in vitro mammalian cytotoxicity. Molecular simulations showed a stable complex 2-DNA that occurred in the minor groove, analogous to propamidine-DNA complex. CONCLUSION: Compound 2, exhibited the higher bioactivity, especially towards G. intestinalis and L. mexicana. This study demonstrated that the replacement of benzimidazole scaffold instead of toxic amidine group in propamidine, results in an enhancement of antiprotozoal bioactivity. The preliminary molecular dynamics simulation suggests that the ligand-DNA complex is stable.


Subject(s)
Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/pharmacology , Benzamidines/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Computer Simulation , Animals , Antiparasitic Agents/chemistry , Antiparasitic Agents/toxicity , Benzimidazoles/chemistry , Benzimidazoles/toxicity , Chemistry Techniques, Synthetic , Chlorocebus aethiops , DNA/chemistry , DNA/metabolism , Drug Evaluation, Preclinical , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleic Acid Conformation , Structure-Activity Relationship , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...