Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 119: 136-149, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28454009

ABSTRACT

Emerging contaminants (ECs) and regulated compounds (RCs) from three different WWTP effluents were measured in the current study. The efficiency of two tertiary treatments, Photobiotreatment (PhtBio) and Multi-Barrier Treatment (MBT), for removing contaminants was determined. Results indicated different percentages of removal depending on the treatment and the origin of the effluent. Risk Quotients (RQs) were determined for different species of algae, Daphnia, and fish. RQ results revealed diverse risk values depending on the bioindicator species. Tonalide, galaxolide (fragrances), and ofloxacin (antibiotic) were the most persistent and harmful substances in tested effluents. "Negligible risk" category was reached since a wide diversity of ECs were removed by MBT with high removal percentages. Contrarily, PhtBio was effective only in the depuration of certain chemical compounds, and its efficiency depended on the composition of the raw effluent.


Subject(s)
Risk Assessment , Wastewater , Water Pollutants, Chemical , Animals , Daphnia , Environmental Monitoring , Fishes , Waste Disposal, Fluid
2.
Water Res ; 91: 86-96, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26773490

ABSTRACT

The main aim of this work was to study the feasibility of multi-barrier treatment (MBT) consisting of filtration, hydrogen peroxide photolysis (H2O2/UVC) and catalytic wet peroxide oxidation (CWPO) for post-treatment of petroleum refinery effluent. Also the possibility of water reuse or safe discharge was considered. The performance of MBT using medium (MP) and low (LP) pressure lamps was compared as well as operation and maintenance (O&M) cost. Decomposition of organic compounds was followed by means of gas chromatography-mass spectrometry (GC-MS), total organic carbon (TOC) and chemical oxygen demand (COD) analysis. After filtration step (25 µm) turbidity and concentration of suspended solids decreased by 92% and 80%, respectively. During H2O2/UVC process with LP lamp at optimal conditions (H2O2:TOC ratio 8 and UVC dose received by water 5.28 WUVC s cm(-2)) removal of phenolic compounds, TOC and COD was 100%, 52.3% and 84.3%, respectively. Complete elimination of phenolic compounds, 47.6% of TOC and 91% of COD was achieved during H2O2/UVC process with MP lamp at optimal conditions (H2O2:TOC ratio 5, UVC dose received by water 6.57 WUVC s cm(-2)). In order to compare performance of H2O2/UVC treatment with different experimental set up, the UVC dose required for removal of mg L(-1) of COD was suggested as a parameter and successfully applied. The hydrophilicity of H2O2/UVC effluent significantly increased which in turn enhanced the oxidation of organic compounds during CWPO step. After H2O2/UVC treatment with LP and MP lamps residual H2O2 concentration was 160 mg L(-1) and 96.5 mg L(-1), respectively. Remaining H2O2 was fully consumed during subsequent CWPO step (6 and 3.5 min of contact time for LP and MP, respectively). Total TOC and COD removal after MBT was 94.7% and 92.2% (using LP lamp) and 89.6% and 95%, (using MP lamp), respectively. The O&M cost for MBT with LP lamp was estimated to be 0.44 € m(-3) while with MP lamp it was nearly five times higher. Toxicity assessment was performed using two marine species (Vibrio fischeri and Paracentrotus lividus sea-urchin) after each treatment step. The highest toxicity was attributed to H2O2/UVC effluent for both tested species. After MBT a drastic decrease of toxicity was achieved.


Subject(s)
Aliivibrio fischeri/drug effects , Paracentrotus/drug effects , Waste Disposal, Fluid/methods , Wastewater/chemistry , Wastewater/toxicity , Animals , Hydrogen Peroxide/chemistry , Oil and Gas Industry , Oxidation-Reduction , Peroxides/chemistry , Photolysis , Recycling/methods , Water Purification/methods
3.
Mar Environ Res ; 114: 1-11, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26741736

ABSTRACT

Ecotoxicological assessment of three different wastewater treatment plant (WWTP) effluents D1, D2 and D3 was performed before and after tertiary treatment using combination of advanced oxidation processes (AOPs). A multibarrier treatment (MBT) consisting of microfiltration (MF), hydrogen peroxide photolysis (H2O2/UVC) and catalytic wet peroxide oxidation (CWPO) was applied for all effluents. Sparus aurata, Paracentrotus lividus, Isochrysis galbana and Vibrio fischeri, representing different trophic levels, constituted the battery of bioassays. Different acute toxicity effects were observed in each WWTP effluents tested. The percentage of sea urchin larval development and mortality fish larvae were the most sensitive endpoints. Significant reduction (p < 0.05) of effluent's toxicity was observed using a classification pT-method after MBT process. Base on obtained results, tested battery of bioassays in pT-method framework can be recommended for acute toxicity preliminary evaluation of WWTP effluents for the marine environment.


Subject(s)
Environmental Monitoring/methods , Waste Disposal, Fluid/methods , Wastewater/toxicity , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/drug effects , Animals , Filtration , Haptophyta/drug effects , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Paracentrotus/drug effects , Photolysis , Sea Bream/metabolism , Water Pollutants, Chemical/analysis
4.
Water Res ; 71: 85-96, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25600300

ABSTRACT

In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 µm) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3).


Subject(s)
Disinfection , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Aliivibrio fischeri , Animals , Azo Compounds/chemistry , Benzenesulfonates/chemistry , Catalysis , Chlorophenols/chemistry , Oxidation-Reduction , Phenanthrenes/chemistry , Phenol/chemistry , Photolysis , Sea Bream , Ultraviolet Rays , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/radiation effects , Water Pollutants, Chemical/toxicity
5.
Mar Pollut Bull ; 64(11): 2471-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22921898

ABSTRACT

An in-depth knowledge of solutes advection and turbulent diffusion is crucial to estimate dispersion area and retention time (t(R)) of pollutants within seagrass habitats. However, there is little knowledge on the influence of seagrass habitat fragmentation on such mechanisms. A set of dye tracer experiments and acoustic Doppler velocimeter measurements (ADV) were conducted. Solute transport conditions were compared in between fragmented (FM) vs homogeneous (HM) intertidal meadows, and in vertical gradients (canopy vs overlaying flow). Results showed the highest horizontal diffusion coefficient (K(y), c.a. 10(-3)m(2)s(-1)) on FM and at the canopy-water column interface, whereas t(R) (2.6-5.6 min) was not affected by fragmentation. It suggests that (1) FM are more vulnerable to pollution events in terms of dispersion area and (2) at low tide, advection rather than turbulent diffusion determines t(R). Furthermore, Taylor's theorem is revealed as a powerful tool to analyze vertical gradients on K(y) within seagrass canopies.


Subject(s)
Ecosystem , Environmental Monitoring , Water Pollutants/analysis , Zosteraceae , Geologic Sediments/analysis , Models, Chemical , Water Movements , Water Pollution/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...