Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 127(20): 204301, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-18052421

ABSTRACT

The nonrelativistic, valence-shell-only-correlated ab initio potential energy curve of the F(2) molecule, which was reported in the preceding paper, is complemented by determining the energy contributions that arise from the electron correlations that involve the core electrons as well as the contributions that are due to spin-orbit coupling and scalar relativistic effects. The dissociation curve rises rather steeply toward the energy of the dissociated atoms because, at larger distances, the atomic quadrupole-quadrupole repulsion and spin-orbit coupling counteract the attractive contributions from incipient covalent binding and correlation forces including dispersion.


Subject(s)
Fluorine/chemistry , Quantum Theory
2.
J Chem Phys ; 127(20): 204313, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-18052433

ABSTRACT

An analytical expression is found for the accurate ab initio potential energy curve of the fluorine molecule that has been determined in the preceding two papers. With it, the vibrational and rotational energy levels of F(2) are calculated using the discrete variable representation. The comparison of this theoretical spectrum with the experimental spectrum, which had been measured earlier using high-resolution electronic spectroscopy, yields a mean absolute deviation of about 5 cm(-1) over the 22 levels. The dissociation energy with respect to the lowest vibrational energy is calculated within 30 cm(-1) of the experimental value of 12 953+/-8 cm(-1). The reported agreement of the theoretical spectrum and dissociation energy with experiment is contingent upon the inclusion of the effects of core-generated electron correlation, spin-orbit coupling, and scalar relativity. The Dunham analysis [Phys. Rev. 41, 721 (1932)] of the spectrum is found to be very accurate. New values are given for the spectroscopic constants.


Subject(s)
Fluorine/chemistry , Quantum Theory , Spectrum Analysis/methods , Rotation , Thermodynamics , Vibration
3.
J Comput Chem ; 28(1): 411-22, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17143871

ABSTRACT

In 1916, Lewis and Kossel laid the empirical ground for the electronic theory of valence, whose quantum theoretical foundation was uncovered only slowly. We can now base the classification of the various traditional chemical bond types in a threefold manner on the one- and two-electron terms of the quantum-physical Hamiltonian (kinetic, atomic core attraction, electron repulsion). Bond formation is explained by splitting up the real process into two physical steps: (i) interaction of undeformed atoms and (ii) relaxation of this nonstationary system. We aim at a flexible bond energy partitioning scheme that can avoid cancellation of large terms of opposite sign. The driving force of covalent bonding is a lowering of the quantum kinetic energy density by sharing. The driving force of heteropolar bonding is a lowering of potential energy density by charge rearrangement in the valence shell. Although both mechanisms are quantum mechanical in nature, we can easily visualize them, since they are of one-electron type. They are however tempered by two-electron correlations. The richness of chemistry, owing to the diversity of atomic cores and valence shells, becomes intuitively understandable with the help of effective core pseudopotentials for the valence shells. Common conceptual difficulties in understanding chemical bonds arise from quantum kinematic aspects as well as from paradoxical though classical relaxation phenomena. On this conceptual basis, a dozen different bond types in diatomic molecules will be analyzed in the following article. We can therefore examine common features as well as specific differences of various bonding mechanisms.

4.
J Chem Phys ; 120(6): 2629-37, 2004 Feb 08.
Article in English | MEDLINE | ID: mdl-15268406

ABSTRACT

A method is presented for expressing the occupied self-consistent-field (SCF) orbitals of a molecule exactly in terms of chemically deformed atomic minimal-basis-set orbitals that deviate as little as possible from free-atom SCF minimal-basis orbitals. The molecular orbitals referred to are the exact SCF orbitals, the free-atom orbitals referred to are the exact atomic SCF orbitals, and the formulation of the deformed "quasiatomic minimal-basis-sets" is independent of the calculational atomic orbital basis used. The resulting resolution of molecular orbitals in terms of quasiatomic minimal basis set orbitals is therefore intrinsic to the exact molecular wave functions. The deformations are analyzed in terms of interatomic contributions. The Mulliken population analysis is formulated in terms of the quasiatomic minimal-basis orbitals. In the virtual SCF orbital space the method leads to a quantitative ab initio formulation of the qualitative model of virtual valence orbitals, which are useful for calculating electron correlation and the interpretation of reactions. The method is applicable to Kohn-Sham density functional theory orbitals and is easily generalized to valence MCSCF orbitals.

5.
J Chem Phys ; 120(6): 2638-51, 2004 Feb 08.
Article in English | MEDLINE | ID: mdl-15268407

ABSTRACT

The method, introduced in the preceding paper, for recasting molecular self-consistent field (SCF) or density functional theory (DFT) orbitals in terms of intrinsic minimal bases of quasiatomic orbitals, which differ only little from the optimal free-atom minimal-basis orbitals, is used to elucidate the bonding in several silicon clusters. The applications show that the quasiatomic orbitals deviate from the minimal-basis SCF orbitals of the free atoms by only very small deformations and that the latter arise mainly from bonded neighbor atoms. The Mulliken population analysis in terms of the quasiatomic minimal-basis orbitals leads to a quantum mechanical interpretation of small-ring strain in terms of antibonding encroachments of localized molecular-orbitals and identifies the origin of the bond-stretch isomerization in Si4H6. In the virtual SCF/DFT orbital space, the method places the qualitative notion of virtual valence orbitals on a firm basis and provides an unambiguous ab initio identification of the frontier orbitals.

SELECTION OF CITATIONS
SEARCH DETAIL
...