Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 650(Pt 1): 1182-1194, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30308806

ABSTRACT

We assessed the physical, chemical and toxicological characteristics of particulate emissions from four light-duty gasoline direct injection vehicles when operated over the LA92 driving cycle. Our results showed that particle mass and number emissions increased markedly during accelerations. For three of the four vehicles tested, particulate matter (PM) mass and particle number emissions were markedly higher during cold-start and the first few accelerations following the cold-start period than during the hot running and hot-start segments of the LA92 cycle. For one vehicle (which had the highest emissions overall) the hot-start and cold-start PM emissions were similar. Black carbon emissions were also much higher during the cold-start conditions, indicating severe fuel wetting leading to slow evaporation and pool burning, and subsequent soot formation. Particle number concentrations and black carbon emissions showed large reductions during the urban and hot-start phases of the test cycle. The oxidative potential of PM was quantified with both a chemical and a biological assay, and the gene expression impacts of the PM in a macrophage model with PCR (polymerase chain reaction) and ELISA (enzyme-linked immunosorbent assay) analyses. Inter- and intra-vehicle variability in oxidative potential per milligram of PM emitted was relatively low for both oxidative assays, suggesting that real-world emissions and exposure can be estimated with distance-normalized emission factors. The PCR response from signaling markers for oxidative stress (e.g., NOX1) was greater than from inflammatory, AhR (aryl hydrocarbon receptor), or MAPK (mitogen-activated protein kinase) signaling. Protein production associated with inflammation (tumor necrosis factor alpha-TNFα) and oxidative stress (HMOX-1) were quantified and displayed relatively high inter-vehicle variability, suggesting that these pathways may be activated by different PM components. Correlation of trace metal concentrations and oxidative potential suggests a role for small, insoluble particles in inducing oxidative stress.


Subject(s)
Air Pollutants/analysis , Motor Vehicles/statistics & numerical data , Particulate Matter/analysis , Vehicle Emissions/analysis , Air Pollutants/chemistry , Air Pollutants/toxicity , Gasoline/analysis , Particulate Matter/chemistry , Particulate Matter/toxicity
2.
Science ; 351(6280): 1447-50, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-27013731

ABSTRACT

Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.

3.
J Phys Chem A ; 118(49): 11555-71, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25388092

ABSTRACT

The influence of molecular structure (branched vs linear) on product formation in the heterogeneous oxidation of unsaturated organic aerosol is investigated. Particle phase product isomers formed from the reaction of squalene (C30H50, a branched alkene with six C═C double bonds) and linolenic acid (C18H30O2, a linear carboxylic acid with three C═C double bonds) with OH radicals are identified and quantified using two-dimensional gas chromatography-mass spectrometry. The reactions are measured at low and high [O2] (∼1% vs 10% [O2]) to understand the roles of hydroxyalkyl and hydroxyperoxy radical intermediates in product formation. A key reaction step is OH addition to a C═C double bond to form a hydroxyalkyl radical. In addition, allylic alkyl radicals, formed from H atom abstraction reactions by hydroxyalkyl or OH radicals play important roles in the chemistry of product formation. Functionalization products dominate the squalene reaction at ∼1% [O2], with the total abundance of observed functionalization products being approximately equal to the fragmentation products at 10% [O2]. The large abundance of squalene fragmentation products at 10% [O2] is attributed to the formation and dissociation of tertiary hydroxyalkoxy radical intermediates. For linolenic acid aerosol, the formation of functionalization products dominates the reaction at both ∼1% and 10% [O2], suggesting that the formation and dissociation of secondary hydroxyalkoxy radicals are minor reaction channels for linear molecules. The distribution of linolenic acid functionalization products depends upon [O2], indicating that O2 controls the reaction pathways of the secondary hydroxyalkyl radical. For both reactions, alcohols are formed in favor of carbonyl functional groups, suggesting that there are some key differences between heterogeneous reactions involving allylic radical intermediates and those reactions of OH radicals with simple saturated hydrocarbons.

4.
J Phys Chem A ; 118(22): 3952-66, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24866291

ABSTRACT

Although many organic molecules commonly found in the atmosphere are known to be surface-active in macroscopic aqueous solutions, the impact of surface partitioning of organic molecules to a microscopic aqueous droplet interface remains unclear. Here we measure the droplet size formed, at a relative humidity (∼99.9%) just below saturation, on submicrometer particles containing an ammonium sulfate core and an organic layer of a model compound of varying thickness. The 12 model organic compounds are a series of dicarboxylic acids (C3 to C10), cis-pinonic, oleic, lauric, and myristic acids, which represent a broad range in solubility from miscible (malonic acid) to insoluble. The variation in droplet size with increasing organic aerosol fraction cannot be explained by assuming the organic material is dissolved in the bulk droplet. Instead, the wet droplet diameters exhibit a complex and nonlinear dependence on organic aerosol volume fraction, leading to hygroscopic growth that is in some cases smaller and in others larger than that predicted by bulk solubility alone. For palmitic and stearic acid, small droplets at or below the detection limit of the instrument are observed, indicating significant kinetic limitations for water uptake, which are consistent with mass accommodation coefficients on the order of 10(-4). A model based on the two-dimensional van der Waals equation of state is used to explain the complex droplet growth with organic aerosol fraction and dry diameter. The model suggests that mono- and dicarboxylic acids with limited water solubility partition to the droplet surface and reduce surface tension only after a two-dimensional condensed monolayer is formed. Two relatively soluble compounds, malonic and glutaric acid, also appear to form surface phases, which increase hygroscopicity. There is a clear alternation in the threshold for droplet growth observed for odd and even carbon number diacids, which is explained in the model by differences in the excluded molecular areas of even (∼40 Å(2)/molecule) and odd (∼20 Å(2)/molecule) diacids. These differences are consistent with the odd diacids arranged at the droplet interface in "end-to-end" configurations with only one acid group in contact with the aqueous phase, which is in contrast to even carbon numbered diacids forming "folded" films with both acid groups in contact with the bulk phase. Organic matter produced by the ozonolysis of α-pinene forms surface films that exhibit similar behavior and become thinner with oxidation, allowing for greater water uptake. These results reveal a new and complex relationship between the composition of an organic aerosol and its hygroscopicity, suggesting that organic surface films might strongly influence cloud droplet formation as well as the multiphase chemistry of organic aerosols.

5.
Environ Sci Technol ; 48(7): 3698-706, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24621254

ABSTRACT

Motor vehicles are major sources of primary organic aerosol (POA), which is a mixture of a large number of organic compounds that have not been comprehensively characterized. In this work, we apply a recently developed gas chromatography mass spectrometry approach utilizing "soft" vacuum ultraviolet photoionization to achieve unprecedented chemical characterization of motor vehicle POA emissions in a roadway tunnel with a mass closure of >60%. The observed POA was characterized by number of carbon atoms (NC), number of double bond equivalents (NDBE) and degree of molecular branching. Vehicular POA was observed to predominantly contain cycloalkanes with one or more rings and one or more branched alkyl side chains (≥80%) with low abundances of n-alkanes and aromatics (<5%), similar to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring structures are most likely dominated by cyclohexane and cyclopentane rings and not larger cycloalkanes. High molecular weight combustion byproducts, that is, alkenes, oxygenates, and aromatics, were not present in significant amounts. The observed carbon number and chemical composition of motor vehicle POA was consistent with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional smaller contribution from unburned diesel fuel and a negligible contribution from unburned gasoline.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Lubricants/analysis , Motor Vehicles , Oils/analysis , Organic Chemicals/analysis , Vehicle Emissions/analysis , Alkanes/analysis , Atmosphere/chemistry , Carbon/analysis , Gas Chromatography-Mass Spectrometry , Gasoline/analysis , San Francisco
6.
J Phys Chem A ; 117(47): 12449-58, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24152093

ABSTRACT

Aerosols containing aliphatic hydrocarbons play a substantial role in the urban atmosphere. Cyclic alkanes constitute a large fraction of aliphatic hydrocarbon emissions originating from incomplete combustion of diesel fuel and motor oil. In the present study, cholestane (C27H48) is used as a model system to examine the OH-initiated heterogeneous oxidation pathways of cyclic alkanes in a photochemical flow tube reactor. Oxidation products are collected on filters and analyzed by a novel soft ionization two-dimensional gas chromatography/mass spectrometry technique. The analysis reveals that the first-generation functionalization products (cholestanones, cholestanals, and cholestanols) are the dominant reaction products that account for up to 70% by mass of the total speciated compounds. The ratio of first-generation carbonyls to alcohols is near unity at every oxidation level. Among the cholestanones/cholestanals, 55% are found to have the carbonyl group on the rings of the androstane skeleton, while 74% of cholestanols have the hydroxyl group on the rings. Particle-phase oxidation products with carbon numbers less than 27 (i.e., "fragmentation products") and higher-generation functionalization products are much less abundant. Carbon bond cleavage was found to occur only on the side chain. Tertiary-carbon alkoxy radicals are suggested to play an important role in governing both the distribution of functionalization products (via alkoxy radical isomerization and reaction with oxygen) and the fragmentation products (via alkoxy radical decomposition). These results provide new insights into the oxidation mechanism of cyclic alkanes.


Subject(s)
Alkanes/chemistry , Cholestanes/chemistry , Hydroxyl Radical/chemistry , Aerosols/chemistry , Models, Molecular , Molecular Structure , Oxidation-Reduction , Photochemical Processes
7.
Phys Chem Chem Phys ; 15(24): 9679-93, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23670352

ABSTRACT

The heterogeneous reaction of hydroxyl radicals with chemically reduced organic aerosol comprised of either squalane or bis(2-ethylhexyl) sebacate are used as model systems to examine how cloud condensation nuclei (CCN) activity evolves with photochemical oxidation. Over the course of the reaction, the critical super-saturation evolves both by the formation of new oxygen functional groups and by changes in aerosol size through the formation of gas phase reaction products. A statistical model of the heterogeneous reaction reveals that it is the formation, volatilization, solubility, and surface activity of many generations of oxidation products that together control the average changes in aerosol hygroscopicity. The experimental observations and model demonstrate the importance of considering the underlying population or subpopulation of species within a particle and how they each uniquely contribute to the average hygroscopicity of a multi-component aerosol. To accurately predict changes in CCN activity upon oxidation requires a reduction in the surface tension of the activating droplet by a subpopulation of squalane reaction products. These results provide additional evidence that surface tension-concentration parameterizations based on macroscopic data should be modified for microscopic droplets.

8.
J Phys Chem A ; 117(19): 3990-4000, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23611149

ABSTRACT

Insights into the influence of molecular structure and thermodynamic phase on the chemical mechanisms of hydroxyl radical-initiated heterogeneous oxidation are obtained by identifying reaction products of submicrometer particles composed of either n-octacosane (C28H58, a linear alkane) or squalane (C30H62, a highly branched alkane) and OH. A common pattern is observed in the positional isomers of octacosanone and octacosanol, with functionalization enhanced toward the end of the molecule. This suggests that relatively large linear alkanes are structured in submicrometer particles such that their ends are oriented toward the surface. For squalane, positional isomers of first-generation ketones and alcohols also form in distinct patterns. Ketones are favored on carbons adjacent to tertiary carbons, while hydroxyl groups are primarily found on tertiary carbons but also tend to form toward the end of the molecule. Some first-generation products, viz., hydroxycarbonyls and diols, contain two oxygen atoms. These results suggest that alkoxy radicals are important intermediates and undergo both intramolecular (isomerization) and intermolecular (chain propagation) hydrogen abstraction reactions. Oxidation products with carbon number less than the parent alkane's are observed to a much greater extent for squalane than for n-octacosane oxidation and can be explained by the preferential cleavage of bonds involving tertiary carbons.


Subject(s)
Air Pollutants/chemistry , Alkanes/chemistry , Carbon/chemistry , Free Radicals/chemistry , Squalene/analogs & derivatives , Aerosols , Atmosphere/chemistry , Isomerism , Kinetics , Molecular Structure , Oxidation-Reduction , Squalene/chemistry
9.
Proc Natl Acad Sci U S A ; 110(10): 3760-4, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23431189

ABSTRACT

Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

SELECTION OF CITATIONS
SEARCH DETAIL
...