Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 14(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38672801

ABSTRACT

The AMTI VIVO™ six degree of freedom joint simulator allows reproducible preclinical testing of joint endoprostheses under specific kinematic and loading conditions. When testing total knee endoprosthesis, the articulating femoral and tibial components are each mounted on an actuator with two and four degrees of freedom, respectively. To approximate realistic physiological conditions with respect to soft tissues, the joint simulator features an integrated virtual ligament model that calculates the restoring forces of the ligament apparatus to be applied by the actuators. During joint motion, the locations of the ligament insertion points are calculated depending on both actuators' coordinates. In the present study, we demonstrate that unintended elastic deformations of the actuators due to the specifically high contact forces in the artificial knee joint have a considerable impact on the calculated ligament forces. This study aims to investigate the effect of this structural compliance on experimental results. While the built-in algorithm for calculating the ligament forces cannot be altered by the user, a reduction of the ligament force deviations due to the elastic deformations could be achieved by preloading the articulating implant components in the reference configuration. As a proof of concept, a knee flexion motion with varying ligament conditions was simulated on the VIVO simulator and compared to data derived from a musculoskeletal multibody model of a total knee endoprosthesis.

2.
Arch Orthop Trauma Surg ; 144(5): 2391-2401, 2024 May.
Article in English | MEDLINE | ID: mdl-38563982

ABSTRACT

INTRODUCTION: The importance of the assembly procedure on the taper connection strength is evident. However, existent surgical technique guides frequently lack comprehensive and precise instructions in this regard. The aim of our experimental study was to evaluate the influence of the surgical technique guide on the femoral head assembly procedure in surgeons with differing levels of experience in total hip arthroplasty. MATERIALS AND METHODS: Twenty-eight participants, divided into four groups based on their lifetime experience in total hip arthroplasty, conducted a femoral head assembly procedure in a simulated intraoperative environment before and after reviewing the surgical technique guide. Demographic information and the number of hammer blows were documented. Hammer velocity and impaction angle were recorded using an optical motion capturing system, while the impaction force was measured using a dynamic force sensor within the impactor. RESULTS: We observed a high variation in the number of hammer blows, maximum force, and impaction angle. Overall, the number of hammer blows decreased significantly from 3 to 2.2 after reviewing the surgical technique guide. The only significant intragroup difference in the number of hammer blows was observed in the group with no prior experience in total hip arthroplasty. No correlation was found between individual factors (age, weight, height) or experience and the measured parameters (velocity, maximum force and angle). CONCLUSIONS: The present study demonstrated a high variation in the parameters of the femoral head assembly procedure. Consideration of the surgical technique guide was found to be a limited factor among participants with varying levels of experience in total hip arthroplasty. These findings underline the importance of sufficient preoperative training, to standardize the assembly procedure, including impaction force, angle, and use of instruments.


Subject(s)
Arthroplasty, Replacement, Hip , Clinical Competence , Femur Head , Humans , Arthroplasty, Replacement, Hip/methods , Femur Head/surgery , Male , Female , Hip Prosthesis , Adult , Middle Aged
3.
Bioengineering (Basel) ; 11(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38391664

ABSTRACT

In biomechanical research, advanced joint simulators such as VIVOTM offer the ability to test artificial joints under realistic kinematics and load conditions. Furthermore, it promises to simplify testing with advanced control approaches and the ability to include virtual ligaments. However, the overall functionality concerning specific test setup conditions, such as the joint lubrication or control algorithm, has not been investigated in-depth so far. Therefore, the aim of this study was to analyse the basic functionality of the VIVOTM joint simulator with six degrees of freedom in order to highlight its capabilities and limitations when testing a total knee endoprostheses using a passive flexion-extension movement. For this, different test setup conditions were investigated, e.g., the control method, repeatability and kinematic reproducibility, waveform frequency, lubrication, and implant embedding. The features offered by the VIVOTM joint simulator are useful for testing joint endoprostheses under realistic loading scenarios. It was found that the results were highly influenced by the varying test setup conditions, although the same mechanical load case was analysed. This study highlights the difficulties encountered when using six degrees of freedom joint simulators, contributes to their understanding, and supports users of advanced joint simulators through functional and tribological analysis of joint endoprostheses.

4.
Antioxidants (Basel) ; 13(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38397770

ABSTRACT

Due to their immediate exhalation after generation at the cellular/microbiome levels, exhaled volatile organic compounds (VOCs) may provide real-time information on pathophysiological mechanisms and the host response to infection. In recent years, the metabolic profiling of the most frequent respiratory infections has gained interest as it holds potential for the early, non-invasive detection of pathogens and the monitoring of disease progression and the response to therapy. Using previously unpublished data, randomly selected individuals from a COVID-19 test center were included in the study. Based on multiplex PCR results (non-SARS-CoV-2 respiratory pathogens), the breath profiles of 479 subjects with the presence or absence of flu-like symptoms were obtained using proton-transfer-reaction time-of-flight mass spectrometry. Among 223 individuals, one respiratory pathogen was detected in 171 cases, and more than one pathogen in 52 cases. A total of 256 subjects had negative PCR test results and had no symptoms. The exhaled VOC profiles were affected by the presence of Haemophilus influenzae, Streptococcus pneumoniae, and Rhinovirus. The endogenous ketone, short-chain fatty acid, organosulfur, aldehyde, and terpene concentrations changed, but only a few compounds exhibited concentration changes above inter-individual physiological variations. Based on the VOC origins, the observed concentration changes may be attributed to oxidative stress and antioxidative defense, energy metabolism, systemic microbial immune homeostasis, and inflammation. In contrast to previous studies with pre-selected patient groups, the results of this study demonstrate the broad inter-individual variations in VOC profiles in real-life screening conditions. As no unique infection markers exist, only concentration changes clearly above the mentioned variations can be regarded as indicative of infection or colonization.

5.
STAR Protoc ; 5(1): 102808, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38170664

ABSTRACT

Here, we present a protocol for using Early Data Visualization Script, a user-friendly software tool to visualize complex volatile metabolomics data in clinical setups. We describe steps for tabulating data and adjusting visual output to visualize complex time-resolved volatile omics data using simple charts and graphs. We then demonstrate possible modifications by detailing procedures for the adaptation of four basic functions. For complete details on the use and execution of this protocol, please refer to Sukul et al. (2022)1 and Remy et al. (2022).2.


Subject(s)
Data Visualization , Metabolomics , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...