Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(12): eadl4018, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517966

ABSTRACT

In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.


Subject(s)
Copper , Leukemia, Myeloid, Acute , Humans , Copper/metabolism , RNA Splicing Factors/genetics , Mutation , Leukemia, Myeloid, Acute/genetics , Ionophores/pharmacology , Phosphoproteins/metabolism
2.
Biochem Cell Biol ; 102(3): 226-237, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38377487

ABSTRACT

We here describe the structure-based design of small molecule inhibitors of the type IV secretion system of Helicobacter pylori. The secretion system is encoded by the cag pathogenicity island, and we chose Cagα, a hexameric ATPase and member of the family of VirB11-like proteins, as target for inhibitor design. We first solved the crystal structure of Cagα in a complex with the previously identified small molecule inhibitor 1G2. The molecule binds at the interface between two Cagα subunits and mutagenesis of the binding site identified Cagα residues F39 and R73 as critical for 1G2 binding. Based on the inhibitor binding site we synthesized 98 small molecule derivates of 1G2 to improve binding of the inhibitor. We used the production of interleukin-8 of gastric cancer cells during H. pylori infection to screen the potency of inhibitors and we identified five molecules (1G2_1313, 1G2_1338, 1G2_2886, 1G2_2889, and 1G2_2902) that have similar or higher potency than 1G2. Differential scanning fluorimetry suggested that these five molecules bind Cagα, and enzyme assays demonstrated that some are more potent ATPase inhibitors than 1G2. Finally, scanning electron microscopy revealed that 1G2 and its derivatives inhibit the assembly of T4SS-determined extracellular pili suggesting a mechanism for their anti-virulence effect.


Subject(s)
Adenosine Triphosphatases , Bacterial Proteins , Helicobacter pylori , Helicobacter pylori/enzymology , Humans , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Type IV Secretion Systems/metabolism , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/antagonists & inhibitors , Drug Design , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Models, Molecular , Binding Sites , Structure-Activity Relationship , Cell Line, Tumor , Interleukin-8/metabolism
3.
ACS Chem Biol ; 18(5): 1039-1046, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37097827

ABSTRACT

p21Cip1 (p21) is a universal cyclin-dependent kinase (CDK) inhibitor that halts cell proliferation and tumor growth by multiple mechanisms. The expression of p21 is often downregulated in cancer cells as a result of the loss of function of transcriptional activators, such as p53, or the increased degradation rate of the protein. To identify small molecules that block the ubiquitin-mediated degradation of p21 as a future avenue for cancer drug discovery, we have screened a compound library using a cell-based reporter assay of p21 degradation. This led to the identification of a benzodiazepine series of molecules that induce the accumulation of p21 in cells. Using a chemical proteomic strategy, we identified the ubiquitin-conjugating enzyme UBCH10 as a cellular target of this benzodiazepine series. We show that an optimized benzodiazepine analogue inhibits UBCH10 ubiquitin-conjugating activity and substrate proteolysis by the anaphase-promoting complex.


Subject(s)
Benzodiazepines , Ubiquitin-Conjugating Enzymes , Ubiquitin-Conjugating Enzymes/chemistry , Benzodiazepines/pharmacology , Proteomics , Ubiquitin/metabolism , Cell Nucleus/metabolism
4.
Blood Adv ; 6(2): 509-514, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34731885

ABSTRACT

Cholesterol homeostasis has been proposed as one mechanism contributing to chemoresistance in AML and hence, inclusion of statins in therapeutic regimens as part of clinical trials in AML has shown encouraging results. Chemical screening of primary human AML specimens by our group led to the identification of lipophilic statins as potent inhibitors of AMLs from a wide range of cytogenetic groups. Genetic screening to identify modulators of the statin response uncovered the role of protein geranylgeranylation and of RAB proteins, coordinating various aspect of vesicular trafficking, in mediating the effects of statins on AML cell viability. We further show that statins can inhibit vesicle-mediated transport in primary human specimens, and that statins sensitive samples show expression signatures reminiscent of enhanced vesicular trafficking. Overall, this study sheds light into the mechanism of action of statins in AML and identifies a novel vulnerability for cytogenetically diverse AML.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Leukemia, Myeloid, Acute , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics
5.
Clin Cancer Res ; 23(22): 6969-6981, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28855357

ABSTRACT

Purpose:RUNX1-mutated (RUNX1mut) acute myeloid leukemia (AML) is associated with adverse outcome, highlighting the urgent need for a better genetic characterization of this AML subgroup and for the design of efficient therapeutic strategies for this disease. Toward this goal, we further dissected the mutational spectrum and gene expression profile of RUNX1mut AML and correlated these results to drug sensitivity to identify novel compounds targeting this AML subgroup.Experimental Design: RNA-sequencing of 47 RUNX1mut primary AML specimens was performed and sequencing results were compared to those of RUNX1 wild-type samples. Chemical screens were also conducted using RUNX1mut specimens to identify compounds selectively affecting the viability of RUNX1mut AML.Results: We show that samples with no remaining RUNX1 wild-type allele are clinically and genetically distinct and display a more homogeneous gene expression profile. Chemical screening revealed that most RUNX1mut specimens are sensitive to glucocorticoids (GCs) and we confirmed that GCs inhibit AML cell proliferation through their interaction with the glucocorticoid receptor (GR). We observed that specimens harboring RUNX1 mutations expected to result in low residual RUNX1 activity are most sensitive to GCs, and that coassociating mutations as well as GR levels contribute to GC sensitivity. Accordingly, acquired glucocorticoid sensitivity was achieved by negatively regulating RUNX1 expression in human AML cells.Conclusions: Our findings show the profound impact of RUNX1 allele dosage on gene expression profile and glucocorticoid sensitivity in AML, thereby opening opportunities for preclinical testing which may lead to drug repurposing and improved disease characterization. Clin Cancer Res; 23(22); 6969-81. ©2017 AACR.


Subject(s)
Alleles , Core Binding Factor Alpha 2 Subunit/genetics , Drug Resistance, Neoplasm/genetics , Gene Dosage , Glucocorticoids/pharmacology , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Gene Expression Regulation, Leukemic , Gene Silencing , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged
6.
Science ; 345(6203): 1509-12, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25237102

ABSTRACT

The small number of hematopoietic stem and progenitor cells in cord blood units limits their widespread use in human transplant protocols. We identified a family of chemically related small molecules that stimulates the expansion ex vivo of human cord blood cells capable of reconstituting human hematopoiesis for at least 6 months in immunocompromised mice. The potent activity of these newly identified compounds, UM171 being the prototype, is independent of suppression of the aryl hydrocarbon receptor, which targets cells with more-limited regenerative potential. The properties of UM171 make it a potential candidate for hematopoietic stem cell transplantation and gene therapy.


Subject(s)
Fetal Blood/drug effects , Hematopoiesis/drug effects , Hematopoietic Stem Cells/drug effects , Indoles/pharmacology , Pyrimidines/pharmacology , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Regeneration/drug effects , Animals , Cell Culture Techniques , Fetal Blood/cytology , Fetal Blood/physiology , Genetic Therapy/methods , Hematopoiesis/physiology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/physiology , Humans , Immunocompromised Host , Indoles/chemistry , Mice , Pyrimidines/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
7.
Nat Methods ; 11(4): 436-42, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24562423

ABSTRACT

Leukemic stem cells (LSCs) are considered a major cause of relapse in acute myeloid leukemia (AML). Defining pathways that control LSC self-renewal is crucial for a better understanding of underlying mechanisms and for the development of targeted therapies. However, currently available culture conditions do not prevent spontaneous differentiation of LSCs, which greatly limits the feasibility of cell-based assays. To overcome these constraints we conducted a high-throughput chemical screen and identified small molecules that inhibit differentiation and support LSC activity in vitro. Similar to reports with cord blood stem cells, several of these compounds suppressed the aryl-hydrocarbon receptor (AhR) pathway, which we show to be inactive in vivo and rapidly activated ex vivo in AML cells. We also identified a compound, UM729, that collaborates with AhR suppressors in preventing AML cell differentiation. Together, these findings provide newly defined culture conditions for improved ex vivo culture of primary human AML cells.


Subject(s)
Adenine/analogs & derivatives , Cell Culture Techniques/methods , Indoles/pharmacology , Leukemia/metabolism , Neoplastic Stem Cells/physiology , Pyrimidines/pharmacology , Adenine/pharmacology , Culture Media, Serum-Free , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid, Acute , Molecular Structure
8.
Bioorg Med Chem Lett ; 24(5): 1294-8, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24513044

ABSTRACT

Spiropiperidine indoline-substituted diaryl ureas had been identified as antagonists of the P2Y1 receptor. Enhancements in potency were realized through the introduction of a 7-hydroxyl substitution on the spiropiperidinylindoline chemotype. SAR studies were conducted to improve PK and potency, resulting in the identification of compound 3e, a potent, orally bioavailable P2Y1 antagonist with a suitable PK profile in preclinical species. Compound 3e demonstrated a robust antithrombotic effect in vivo and improved bleeding risk profile compared to the P2Y12 antagonist clopidogrel in rat efficacy/bleeding models.


Subject(s)
Phenylurea Compounds/chemistry , Platelet Aggregation Inhibitors/chemistry , Purinergic P2Y Receptor Antagonists/chemistry , Receptors, Purinergic P2Y1/chemistry , Thiazoles/chemistry , Urea/analogs & derivatives , Administration, Oral , Animals , Dogs , Half-Life , Macaca fascicularis , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , Rats , Receptors, Purinergic P2Y1/metabolism , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Thiazoles/pharmacology , Thiazoles/therapeutic use , Thrombosis/drug therapy , Urea/pharmacokinetics , Urea/pharmacology , Urea/therapeutic use
9.
Bioorg Med Chem Lett ; 23(24): 6825-8, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24269480

ABSTRACT

A number of new amine scaffolds with good inhibitory activity in the ADP-induced platelet aggregation assay have been found to be potent antagonists of the P2Y1 receptor. SAR optimization led to the identification of isoindoline 3c and piperidine 4a which showed good in vitro binding and functional activities, as well as improved aqueous solubility. Among them, the piperidine 4a showed the best overall profile with favorable PK parameters.


Subject(s)
Amines/chemistry , Purinergic P2Y Receptor Agonists/chemistry , Receptors, Purinergic P2Y1/chemistry , Urea/analogs & derivatives , Adenosine Diphosphate/pharmacology , Amines/chemical synthesis , Amines/pharmacokinetics , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Half-Life , Humans , Microsomes, Liver/metabolism , Piperidines/chemistry , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/pharmacokinetics , Protein Binding , Purinergic P2Y Receptor Agonists/chemical synthesis , Purinergic P2Y Receptor Agonists/pharmacokinetics , Rats , Receptors, Purinergic P2Y1/metabolism , Structure-Activity Relationship , Urea/chemical synthesis , Urea/pharmacokinetics
10.
J Med Chem ; 56(22): 9275-95, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24164581

ABSTRACT

Preclinical antithrombotic efficacy and bleeding models have demonstrated that P2Y1 antagonists are efficacious as antiplatelet agents and may offer a safety advantage over P2Y12 antagonists in terms of reduced bleeding liabilities. In this article, we describe the structural modification of the tert-butyl phenoxy portion of lead compound 1 and the subsequent discovery of a novel series of conformationally constrained ortho-anilino diaryl ureas. In particular, spiropiperidine indoline-substituted diaryl ureas are described as potent, orally bioavailable small-molecule P2Y1 antagonists with improved activity in functional assays and improved oral bioavailability in rats. Homology modeling and rat PK/PD studies on benchmark compound 3l will also be presented. Compound 3l was our first P2Y1 antagonist to demonstrate a robust oral antithrombotic effect with mild bleeding liability in the rat thrombosis and hemostasis models.


Subject(s)
Drug Design , Molecular Conformation , Phenylurea Compounds/pharmacology , Phenylurea Compounds/pharmacokinetics , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Receptors, Purinergic P2Y1/metabolism , Spiro Compounds/pharmacology , Spiro Compounds/pharmacokinetics , Urea/pharmacology , Urea/pharmacokinetics , Animals , Biological Availability , Humans , Indoles/chemistry , Models, Molecular , Phenylurea Compounds/chemistry , Phenylurea Compounds/metabolism , Purinergic P2Y Receptor Antagonists/chemistry , Purinergic P2Y Receptor Antagonists/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2Y1/chemistry , Sequence Homology, Amino Acid , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Urea/chemistry , Urea/metabolism
11.
Bioorg Med Chem Lett ; 23(12): 3519-22, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23668989

ABSTRACT

Five-membered-ring heterocyclic urea mimics have been found to be potent and selective antagonists of the P2Y1 receptor. SAR of the various heterocyclic replacements is presented, as well as side-chain SAR of the more potent thiadiazole ring system which leads to thiadiazole 4c as a new antiplatelet agent.


Subject(s)
Purinergic P2Y Receptor Antagonists/chemistry , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Purinergic P2Y1/chemistry , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Humans , Kinetics , Protein Binding , Structure-Activity Relationship , Urea/chemistry
12.
Bioorg Med Chem Lett ; 18(9): 2985-9, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18395443

ABSTRACT

We report herein a series of substituted N-(1H-pyrrolo[2,3-b]pyridin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4-amines as inhibitors of vascular endothelial growth factor receptor-2 tyrosine kinase. Through structure-activity relationship studies, biochemical potency, pharmacokinetics, and kinase selectivity were optimized to afford BMS-645737 (13), a compound with good preclinical in vivo activity against human tumor xenograft models.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Drug Design , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrroles/pharmacology , Triazines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/chemical synthesis , Animals , Cell Line , Cytochrome P-450 CYP3A Inhibitors , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Pyrroles/chemical synthesis , Structure-Activity Relationship , Triazines/chemical synthesis , Xenograft Model Antitumor Assays
14.
Org Lett ; 5(26): 5023-5, 2003 Dec 25.
Article in English | MEDLINE | ID: mdl-14682755

ABSTRACT

Two routes describing the preparation of 4-fluoro-1H-pyrrolo[2,3-b]pyridine (4a) from 1H-pyrrolo[2,3-b]pyridine N-oxide (1) are presented. Regioselective fluorination was achieved using either the Balz-Schiemann reaction or lithium-halogen exchange. [reaction: see text]

SELECTION OF CITATIONS
SEARCH DETAIL
...