Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 11): 1549-57, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23090404

ABSTRACT

The zinc-containing corrinoid:coenzyme M methyltransferase MtaA is part of the methanol-coenzyme M-methyltransferase complex of Methanosarcina mazei. The whole complex consists of three subunits: MtaA, MtaB and MtaC. The MtaB-MtaC complex catalyses the cleavage of methanol (bound to MtaB) and the transfer of the methyl group onto the cobalt of cob(I)alamin (bound to MtaC). The MtaA-MtaC complex catalyses methyl transfer from methyl-cob(III)alamin (bound to MtaC) to coenzyme M (bound to MtaA). The crystal structure of the MtaB-MtaC complex from M. barkeri has previously been determined. Here, the crystal structures of MtaA from M. mazei in a substrate-free but Zn(2+)-bound state and in complex with Zn(2+) and coenzyme M (HS-CoM) are reported at resolutions of 1.8 and 2.1 Å, respectively. A search for homologous proteins revealed that MtaA exhibits 23% sequence identity to human uroporphyrinogen III decarboxylase, which has also the highest structural similarity (r.m.s.d. of 2.03 Å for 306 aligned amino acids). The main structural feature of MtaA is a TIM-barrel-like fold, which is also found in all other zinc enzymes that catalyse thiol-group alkylation. The active site of MtaA is situated at the narrow bottom of a funnel such that the thiolate group of HS-CoM points towards the Zn(2+) ion. The Zn(2+) ion in the active site of MtaA is coordinated tetrahedrally via His240, Cys242 and Cys319. In the substrate-free form the fourth ligand is Glu263. Binding of HS-CoM leads to exchange of the O-ligand of Glu263 for the S-ligand of HS-CoM with inversion of the zinc geometry. The interface between MtaA and MtaC for transfer of the methyl group from MtaC-bound methylcobalamin is most likely to be formed by the core complex of MtaB-MtaC and the N-terminal segment (a long loop containing three α-helices and a ß-hairpin) of MtaA, which is not part of the TIM-barrel core structure of MtaA.


Subject(s)
Corrinoids/metabolism , Mesna/metabolism , Methanosarcina/enzymology , Methyltransferases/chemistry , Methyltransferases/metabolism , Zinc/metabolism , Amino Acid Sequence , Catalytic Domain , Corrinoids/chemistry , Humans , Mesna/chemistry , Methanosarcina/chemistry , Methanosarcina/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Sequence Alignment , Substrate Specificity , Zinc/chemistry
2.
J Biol Chem ; 278(26): 23508-14, 2003 Jun 27.
Article in English | MEDLINE | ID: mdl-12707263

ABSTRACT

Epac1 is a guanine nucleotide exchange factor (GEF) for the small GTPase Rap1 that is directly activated by cAMP. This protein consists of a regulatory region with a cAMP-binding domain and a catalytic region that mediates the GEF activity. Epac is inhibited by an intramolecular interaction between the cAMP-binding domain and the catalytic region in the absence of cAMP. cAMP binding is proposed to induce a conformational change, which allows a LID, an alpha-helix at the C-terminal end of the cAMP-binding site, to cover the cAMP-binding site (Rehmann, H., Prakash, B., Wolf, E., Rueppel, A., de Rooij, J., Bos, J. L., and Wittinghofer, A. (2003) Nat. Struct. Biol. 10, 26-32). Here we show that mutations of conserved residues in the LID region affect cAMP binding only marginally but have a drastic effect on cAMP-induced GEF activity. Surprisingly, some of the mutants have an increased maximal GEF activity compared with wild type. Furthermore, mutation of the conserved VLVLE sequence at the C-terminal end of the LID into five alanine residues makes Epac constitutively active. From these results we conclude that the LID region plays a pivotal role in the communication between the regulatory and catalytic part of Epac.


Subject(s)
Allosteric Regulation , Guanine Nucleotide Exchange Factors/chemistry , Allosteric Site , Amino Acid Sequence , Catalytic Domain , Conserved Sequence , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Humans , Kinetics , Molecular Sequence Data , Mutation , Protein Structure, Tertiary
3.
Nat Struct Biol ; 10(1): 26-32, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12469113

ABSTRACT

Cyclic adenosine monophosphate (cAMP) is a universal second messenger that, in eukaryotes, was believed to act only on cAMP-dependent protein kinase A (PKA) and cyclic nucleotide-regulated ion channels. Recently, guanine nucleotide exchange factors specific for the small GTP-binding proteins Rap1 and Rap2 (Epacs) were described, which are also activated directly by cAMP. Here, we have determined the three-dimensional structure of the regulatory domain of Epac2, which consists of two cyclic nucleotide monophosphate (cNMP)-binding domains and one DEP (Dishevelled, Egl, Pleckstrin) domain. This is the first structure of a cNMP-binding domain in the absence of ligand, and comparison with previous structures, sequence alignment and biochemical experiments allow us to delineate a mechanism for cyclic nucleotide-mediated conformational change and activation that is most likely conserved for all cNMP-regulated proteins. We identify a hinge region that couples cAMP binding to a conformational change of the C-terminal regions. Mutations in the hinge of Epac can uncouple cAMP binding from its exchange activity.


Subject(s)
Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Amino Acid Sequence , Binding Sites/genetics , Catalytic Domain , Crystallography, X-Ray , Cyclic AMP/chemistry , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Structure-Activity Relationship , rap GTP-Binding Proteins/chemistry , rap GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...