Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891422

ABSTRACT

In tissue engineering, electrospinning has gained significant interest due to its highly porous structure with an excellent surface area to volume ratio and fiber diameters that can mimic the structure of the extracellular matrix. Bioactive substances such as growth factors and drugs are easily integrated. In many applications, there is an important need for small tubular structures (I.D. < 1 mm). However, fabricating sub-millimeter structures is challenging as it reduces the collector area and increases the disturbing factors, leading to significant fiber loss. This study aims to establish a reliable and reproducible electrospinning process for sub-millimeter tubular structures with minimized material loss. Influencing factors were analyzed, and disturbance factors were removed before optimizing control variables through the design-of-experiments method. Structural and morphological characterization was performed, including the yield, thickness, and fiber arrangement of the scaffold. We evaluated the electrospinning process to enhance the manufacturing efficiency and reduce material loss. The results indicated that adjusting the voltage settings and polarity significantly increased the fiber yield from 8% to 94%. Variations in the process parameters also affected the scaffold thickness and homogeneity. The results demonstrate the complex relationship between the process parameters and provide valuable insights for optimizing electrospinning, particularly for the cost-effective and reproducible production of small tubular diameters.

2.
Front Bioeng Biotechnol ; 11: 1268782, 2023.
Article in English | MEDLINE | ID: mdl-38026867

ABSTRACT

Introduction: The Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic, enters the human body via the epithelial cells of the airway tract. To trap and eject pathogens, the airway epithelium is composed of ciliated and secretory cells that produce mucus which is expelled through a process called mucociliary clearance. Methods: This study examines the early stages of contact between SARS-CoV-2 particles and the respiratory epithelium, utilizing 3D airway tri-culture models exposed to ultraviolet light-irradiated virus particles. These cultures are composed of human endothelial cells and human tracheal mesenchymal cells in a fibrin hydrogel matrix covered by mucociliated human tracheal epithelial cells. Results: We found that SARS-CoV-2 particles trigger a significant increase in ciliation on the epithelial surface instructed through a differentiation of club cells and basal stem cells. The contact with SARS-CoV-2 particles also provoked a loss of cell-cell tight junctions and impaired the barrier integrity. Further immunofluorescence analyses revealed an increase in FOXJ1 expression and PAK1/2 phosphorylation associated with particle-induced ciliation. Discussion: An understanding of epithelial responses to virus particles may be instrumental to prevent or treat respiratory infectious diseases such as COVID-19.

3.
Bioengineering (Basel) ; 10(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37760166

ABSTRACT

The application of tissue-engineered heart valves in the high-pressure circulatory system is still challenging. One possible solution is the development of biohybrid scaffolds with textile reinforcement to achieve improved mechanical properties. In this article, we present a manufacturing process of bio-inspired fiber reinforcement for an aortic valve scaffold. The reinforcement structure consists of polyvinylidene difluoride monofilament fibers that are biomimetically arranged by a novel winding process. The fibers were embedded and fixated into electrospun polycarbonate urethane on a cylindrical collector. The scaffold was characterized by biaxial tensile strength, bending stiffness, burst pressure and hemodynamically in a mock circulation system. The produced fiber-reinforced scaffold showed adequate acute mechanical and hemodynamic properties. The transvalvular pressure gradient was 3.02 ± 0.26 mmHg with an effective orifice area of 2.12 ± 0.22 cm2. The valves sustained aortic conditions, fulfilling the ISO-5840 standards. The fiber-reinforced scaffold failed in a circumferential direction at a stress of 461.64 ± 58.87 N/m and a strain of 49.43 ± 7.53%. These values were above the levels of tested native heart valve tissue. Overall, we demonstrated a novel manufacturing approach to develop a fiber-reinforced biomimetic scaffold for aortic heart valve tissue engineering. The characterization showed that this approach is promising for an in situ valve replacement.

4.
Small ; 18(18): e2200924, 2022 05.
Article in English | MEDLINE | ID: mdl-35363403

ABSTRACT

Carbon monoxide (CO) is a gaseous signaling molecule that modulates inflammation, cell survival, and recovery after myocardial infarction. However, handling and dosing of CO as a compressed gas are difficult. Here, light-triggerable and magnetic resonance imaging (MRI)-detectable CO release from dimanganese decacarbonyl (CORM-1) are demonstrated, and the development of CORM-1-loaded polymeric microbubbles (COMB) is described as an ultrasound (US)- and MRI-imageable drug delivery platform for triggerable and targeted CO therapy. COMB are synthesized via a straightforward one-step loading protocol, present a narrow size distribution peaking at 2 µm, and show excellent performance as a CORM-1 carrier and US contrast agent. Light irradiation of COMB induces local production and release of CO, as well as enhanced longitudinal and transversal relaxation rates, enabling MRI monitoring of CO delivery. Proof-of-concept studies for COMB-enabled light-triggered CO release show saturation of hemoglobin with CO in human blood, anti-inflammatory differentiation of macrophages, reduction of hypoxia-induced reactive oxygen species (ROS) production, and inhibition of ischemia-induced apoptosis in endothelial cells and cardiomyocytes. These findings indicate that CO-generating MB are interesting theranostic tools for attenuating hypoxia-associated and ROS-mediated cell and tissue damage in cardiovascular disease.


Subject(s)
Microbubbles , Organometallic Compounds , Carbon Monoxide , Endothelial Cells , Humans , Hypoxia , Precision Medicine , Reactive Oxygen Species
5.
Int J Mol Sci ; 21(12)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545804

ABSTRACT

Rapid vascularization is required for the regeneration of dental pulp due to the spatially restricted tooth environment. Extracellular vesicles (EVs) released from mesenchymal stromal cells show potent proangiogenic effects. Since EVs suffer from rapid clearance and low accumulation in target tissues, an injectable delivery system capable of maintaining a therapeutic dose of EVs over a longer period would be desirable. We fabricated an EV-fibrin gel composite as an in situ forming delivery system. EVs were isolated from dental pulp stem cells (DPSCs). Their effects on cell proliferation and migration were monitored in monolayers and hydrogels. Thereafter, endothelial cells and DPSCs were co-cultured in EV-fibrin gels and angiogenesis as well as collagen deposition were analyzed by two-photon laser microscopy. Our results showed that EVs enhanced cell growth and migration in 2D and 3D cultures. EV-fibrin gels facilitated vascular-like structure formation in less than seven days by increasing the release of VEGF. The EV-fibrin gel promoted the deposition of collagen I, III, and IV, and readily induced apoptosis during the initial stage of angiogenesis. In conclusion, we confirmed that EVs from DPSCs can promote angiogenesis in an injectable hydrogel in vitro, offering a novel and minimally invasive strategy for regenerative endodontic therapy.


Subject(s)
Dental Pulp/cytology , Extracellular Vesicles/metabolism , Fibrin/chemistry , Human Umbilical Vein Endothelial Cells/cytology , Mesenchymal Stem Cells/cytology , Cell Movement , Cell Proliferation , Coculture Techniques , Collagen/metabolism , Dental Pulp/physiology , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Microscopy, Confocal , Regeneration , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...