Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Physiol ; 11: 231, 2020.
Article in English | MEDLINE | ID: mdl-32256388

ABSTRACT

The aim of the present study was to compare the effects of countermovement jump (CMJ) and drop jump (DJ) training on the volleyball-specific jumping ability of non-professional female volleyball players. For that purpose, 26 female volleyball players (15-32 years) were assigned to either a CMJ (20.4 ± 3.1 years, 171.0 ± 3.0 cm) or a DJ training group (22.0 ± 4.4 years, 168.2 ± 5.0 cm), which performed a six-week jump training (two sessions per week, 60 jumps per session). Each group performed 20% of the jumps in the jump type of the other group in order to minimize the influence of enhanced motor coordination on the differences between groups regarding the improvements of jump performance. Before and after the training, jump height was assessed in four jump types, including the trained and volleyball-specific jump types. Although both training forms substantially improved jump height, the CMJ training was significantly more effective in all jump types (17 vs. 7% on average; p < 0.001). This suggests that, at least for non-professional female volleyball players and a training duration of six weeks, training with a high percentage of CMJs is more effective than one with a high percentage of DJs. We hypothesize that this might be related to the slower stretch-shortening cycle during CMJs, which seems to be more specific for these players and tasks. These findings should support volleyball coaches in designing optimal jump trainings.

2.
Article in English | MEDLINE | ID: mdl-30655911

ABSTRACT

BACKGROUND: The aging process alters upright posture and locomotion control from an automatically processed to a more cortically controlled one. The present study investigated a postural-cognitive dual-task paradigm in young and older adults using functional Near-Infrared Spectroscopy (fNIRS). METHODS: Twenty healthy participants (10 older adults 72 ± 3 y, 10 young adults 23 ± 3 y) performed a cognitive (serial subtractions) and a postural task (tandem stance) as single-tasks (ST) and concurrently as a dual-task (DT) while the oxygenation levels of the dorsolateral prefrontal cortex (DLPFC) were measured. RESULTS: In the cognitive task, young adults performed better than older adults in both conditions (ST and DT) and could further increase the number of correct answers from ST to DT (all ps ≤ 0.027) while no change was found for older adults. No significant effects were found for the postural performance. Cerebral oxygenation values (O2Hb) increased significantly from baseline to the postural ST (p = 0.033), and from baseline to the DT (p = 0.031) whereas no changes were found in deoxygenated hemoglobin (HHb). Finally, the perceived exertion differed between all conditions (p ≤ 0.003) except for the postural ST and the DT (p = 0.204). CONCLUSIONS: There was a general lack of age-related changes except the better cognitive performance under motor-cognitive conditions in young compared to older adults. However, the current results point out that DLPFC is influenced more strongly by postural than cognitive load. Future studies should assess the different modalities of cognitive as well as postural load.

3.
Hum Mov Sci ; 59: 170-177, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29684761

ABSTRACT

Postural control undergoes rapid changes during child development. However, the influence of balance training (BT) on the compensation of perturbations has not yet been investigated in children. For this purpose, young (6.7 ±â€¯0.6 years) and old children (12.0 ±â€¯0.4 years) were exposed to externally induced anticipated (direction known) and non-anticipated (direction unknown) perturbations on a free swinging platform before and after either child-oriented BT (INT; young: n = 12, old: n = 18) or regular physical education (CON; young: n = 9, old: n = 9). At baseline, old children exhibited less platform sway after perturbations than young children (p = .004; η2p = 0.17). However, no differences were found between anticipated and non-anticipated perturbations. After training, INT reduced the platform sway path while CON remained stable (-11.1% vs. +2.7%; p < .001; η2p = 0.26). Furthermore, the young INT group adapted statistically similarly in anticipated and non-anticipated situations (-7.9% vs. -12.6%; p = .556; r = 0.33), whereas the old INT group tended to improve more in anticipated perturbations (-15.1% vs. -8.2%; p = .052; r = 0.51). Thus, the maturity of the postural system seems to influence the extent of training adaptations in anticipated perturbations. Furthermore, this study provides evidence that BT can improve postural responses to external perturbations in children and may represent a useful intervention to prevent falls.


Subject(s)
Adaptation, Physiological/physiology , Aging/physiology , Physical Education and Training/methods , Postural Balance/physiology , Accidental Falls , Adolescent , Child , Child Development/physiology , Female , Humans , Male
4.
Front Behav Neurosci ; 12: 10, 2018.
Article in English | MEDLINE | ID: mdl-29472847

ABSTRACT

Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.

5.
Pediatr Exerc Sci ; 30(1): 176-184, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28605259

ABSTRACT

PURPOSE: Balance training (BT) studies in children reported conflicting results without evidence for improvements in children under the age of 8. The aim of this study therefore was to compare BT adaptations in children of different age groups to clarify whether young age prevents positive training outcomes. METHODS: The effects of 5 weeks of child-oriented BT were tested in 77 (38 girls and 39 boys) participants of different age groups (6-7 y, 11-12 y, and 14-15 y) and compared with age-matched controls. Static and dynamic postural control, explosive strength, and jump height were assessed. RESULTS: Across age groups, dynamic postural sway decreased (-18.7%; P = .012; [Formula: see text]) and explosive force increased (8.6%; P = .040; [Formula: see text]) in the intervention groups. Age-specific improvements were observed in dynamic postural sway, with greatest effects in the youngest group (-28.8%; P = .026; r = .61). CONCLUSION: In contrast to previous research using adult-oriented balance exercises, this study demonstrated for the first time that postural control can be trained from as early as the age of 6 years in children when using child-oriented BT. Therefore, the conception of the training seems to be essential in improving balance skills in young children.


Subject(s)
Physical Conditioning, Human , Postural Balance , Adaptation, Physiological , Adolescent , Age Factors , Child , Female , Humans , Male , Physical Education and Training
6.
J Vis Exp ; (127)2017 09 11.
Article in English | MEDLINE | ID: mdl-28930973

ABSTRACT

It is well recognized that an external focus (EF) compared with an internal focus (IF) of attention improves motor learning and performance. Studies have indicated benefits in accuracy, balance, force production, jumping performance, movement speed, oxygen consumption, and fatiguing task. Although behavioral outcomes of using an EF strategy are well explored, the underlying neural mechanisms remain unknown. A recent TMS study compared the activity of the primary motor cortex (M1) between an EF and an IF. More precisely, this study showed that, when adopting an EF, the activity of intracortical inhibitory circuits is enhanced. On the behavioral level, the present protocol tests the influence of attentional foci on the time to task failure (TTF) when performing submaximal contractions of the first dorsal interosseous (FDI). Additionally, the current paper describes two TMS protocols to assess the influence of attentional conditions on the activity of cortical inhibitory circuits within the M1. Thus, the present article describes how to use single-pulse TMS at intensities below the motor threshold (subTMS) and paired-pulse TMS, inducing short-interval intracortical inhibition (SICI) when applied to the M1. As these methods are assumed to reflect the responsiveness of GABAergic inhibitory neurons, without being affected by spinal reflex circuitries, they are well suited to measuring the activity of intracortical inhibitory circuits within the M1. The results show that directing attention externally improves motor performance, as participants were able to prolong the time to task failure. Moreover, the results were accompanied by a larger subTMS-induced electromyography suppression and SICI when adopting an EF compared to an IF. As the level of cortical inhibition within the M1 was previously demonstrated to influence motor performance, the enhanced inhibition with an EF might contribute to the better movement efficiency observed in the behavioral task, indicated by a prolonged TTF with an EF.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods , Attention/physiology , Humans
7.
Neuroscience ; 365: 12-22, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-28951323

ABSTRACT

Little is known about how the central nervous system prepares postural responses differently in anticipated compared to non-anticipated perturbations. To investigate this, participants were exposed to translational and rotational perturbations presented in a blocked (anticipated) and a random (non-anticipated) design. The preparatory setting ('central set') was measured by H-reflexes, motor-evoked potentials (MEPs), and short-interval intracortical inhibition (SICI) shortly before perturbation onset in the soleus of 15 healthy adults. Additionally, the behavioral consequences of differential preparatory settings were analyzed by comparing the short- (SLR), medium- (MLR), and long-latency response (LLR) of the soleus after anticipated and non-anticipated rotations and translations. H-reflexes elicited before perturbation were different between conditions (p=0.023) with larger amplitudes in anticipated translations compared to anticipated rotations (37.0%; p=0.048). Reduced SICI was found in the three conditions containing perturbations compared to static standing (p<0.001). Muscular responses assessed after perturbations remained unchanged for the SLR and MLR, whereas the LLR was decreased in anticipated rotations (-36.2%; p=0.002) and increased in anticipated translations (16.7%; p=0.046) compared to the corresponding non-anticipated perturbation. As the SLR and MLR are organized at the spinal and the LLR at the cortical level, the preparatory setting seems to mainly influence cortically mediated postural responses. However, the modulation of the H-reflex before anticipated perturbations indicates that supraspinal centers adjusted Ia-afferent transmission for the soleus in a perturbation-specific manner. Intracortical inhibition was also modulated but differentiates to a lesser extent only between perturbation conditions and unperturbed stance.


Subject(s)
Cerebral Cortex/physiology , Evoked Potentials, Motor/physiology , H-Reflex/physiology , Postural Balance/physiology , Spinal Cord/physiology , Adult , Ankle Joint/innervation , Electromyography , Female , Humans , Male , Movement , Muscle, Skeletal/physiology , Neuromuscular Junction/physiology , Posture , Pyramidal Tracts , Random Allocation , Reaction Time/physiology , Rotation , Transcranial Magnetic Stimulation , Young Adult
8.
J Negat Results Biomed ; 16(1): 11, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28610582

ABSTRACT

BACKGROUND: While the positive effect of balance training on age-related impairments in postural stability is well-documented, the neural correlates of such training adaptations in older adults remain poorly understood. This study therefore aimed to shed more light on neural adaptations in response to balance training in older adults. METHODS: Postural stability as well as spinal reflex and cortical excitability was measured in older adults (65-80 years) before and after 5 weeks of balance training (n = 15) or habitual activity (n = 13). Postural stability was assessed during one- and two-legged quiet standing on a force plate (static task) and a free-swinging platform (dynamic task). The total sway path was calculated for all tasks. Additionally, the number of errors was counted for the one-legged tasks. To investigate changes in spinal reflex excitability, the H-reflex was assessed in the soleus muscle during quiet upright stance. Cortical excitability was assessed during an antero-posterior perturbation by conditioning the H-reflex with single-pulse transcranial magnetic stimulation. RESULTS: A significant training effect in favor of the training group was found for the number of errors conducted during one-legged standing (p = .050 for the static and p = .042 for the dynamic task) but not for the sway parameters in any task. In contrast, no significant effect was found for cortical excitability (p = 0.703). For spinal excitability, an effect of session (p < .001) as well as an interaction of session and group (p = .009) was found; however, these effects were mainly due to a reduced excitability in the control group. CONCLUSIONS: In line with previous results, older adults' postural stability was improved after balance training. However, these improvements were not accompanied by significant neural adaptations. Since almost identical studies in young adults found significant behavioral and neural adaptations after four weeks of training, we assume that age has an influence on the time course of such adaptations to balance training and/or the ability to transfer them from a trained to an untrained task.


Subject(s)
Adaptation, Physiological , Behavior , Nervous System Physiological Phenomena , Postural Balance/physiology , Adult , Aged , Conditioning, Psychological , Female , Humans , Male , Reflex/physiology
9.
Front Aging Neurosci ; 8: 317, 2016.
Article in English | MEDLINE | ID: mdl-28066238

ABSTRACT

Postural control declines across adult lifespan. Non-physical balance training has been suggested as an alternative to improve postural control in frail/immobilized elderly people. Previous studies showed that this kind of training can improve balance control in young and older adults. However, it is unclear whether the brain of young and older adults is activated differently during mental simulations of balance tasks. For this purpose, soleus (SOL) and tibialis motor evoked potentials (MEPs) and SOL H-reflexes were elicited while 15 elderly (mean ± SD = 71 ± 4.6 years) and 15 young participants (mean ± SD = 27 ± 4.6 years) mentally simulated static and dynamic balance tasks using motor imagery (MI), action observation (AO) or the combination of AO and MI (AO + MI). Young subjects displayed significant modulations of MEPs that depended on the kind of mental simulation and the postural task. Elderly adults also revealed differences between tasks, but not between mental simulation conditions. Furthermore, the elderly displayed larger MEP facilitation during mental simulation (AGE-GROUP; F(1,28) = 5.9; p = 0.02) in the SOL muscle compared to the young and a task-dependent modulation of the tibialis background electromyography (bEMG) activity. H-reflex amplitudes and bEMG in the SOL showed neither task- nor age-dependent modulation. As neither mental simulation nor balance tasks modulated H-reflexes and bEMG in the SOL muscle, despite large variations in the MEP-amplitudes, there seems to be an age-related change in the internal cortical representation of balance tasks. Moreover, the modulation of the tibialis bEMG in the elderly suggests that aging partially affects the ability to inhibit motor output.

10.
Med Sci Sports Exerc ; 48(4): 714-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26587843

ABSTRACT

PURPOSE: Different approaches like providing augmented feedback (aF), applying an external focus of attention (EF), or rewarding participants with money (RE) have been shown to instantly enhance motor performance. So far, these approaches have been tested either in separate studies or directly against each other. However, there is no study that combined aF, EF, and/or RE to test whether this provokes additional benefits. The aim of the present study was therefore to identify the most powerful combination. METHODS: Eighteen participants performed maximal countermovement jumps in six different conditions: neutral (NE), aF, RE, aF + EF, aF + RE, and aF + EF + RE. RESULTS: Participants demonstrated the highest jump heights with aF + EF, followed by aF + EF + RE, aF + RE, aF, RE, and finally, NE. Activity of the M. rectus femoris differed significantly between conditions resulting in lower muscular activity in aF + EF and aF + EF + RE compared with NE. All other parameters, such as ground reaction forces and joint angles, were comparable across conditions. CONCLUSIONS: This is the first study showing superior performance when combining aF with EF. As reduced muscular activity was found only in conditions with EF, it is argued in line with the constrained action hypothesis that adopting an EF improves movement efficiency. In contrast, aF seems to rather enhance (intrinsic) motivation. However, monetary reward did not further amplify performance.


Subject(s)
Athletic Performance/psychology , Attention , Feedback , Reward , Adolescent , Adult , Biomechanical Phenomena , Electromyography , Female , Humans , Male , Muscle Strength , Muscle, Skeletal/physiology , Young Adult
11.
Sports Med ; 45(12): 1739-58, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26253187

ABSTRACT

Simultaneous performance of a postural and a concurrent task is rather unproblematic as long as the postural task is executed in an automatic way. However, in situations where postural control requires more central processing, cognitive resources may be exceeded by the addition of an attentionally demanding task. This may lead to interference between the two tasks, manifested in a decreased performance in one or both tasks (dual-task costs). Owing to changes in attentional demands of postural tasks as well as processing capacities across the lifespan, it might be assumed that dual-task costs are particularly pronounced in children and older adults probably leading to a U-shaped pattern for dual-task costs as a function of age. However, these changes in the ability of dual-tasking posture from childhood to old age have not yet been systematically reviewed. Therefore, Web of Science and PubMed databases were searched for studies comparing dual-task performance with one task being standing or walking in healthy groups of young adults and either children or older adults. Seventy-nine studies met inclusion criteria. For older adults, the expected increase in dual-task costs could be confirmed. In contrast, in children there was only feeble evidence for a trend towards enlarged dual-task costs. More good-quality studies comparing dual-task ability in children, young, and, ideally, also older adults within the same paradigm are needed to draw unambiguous conclusions about lifespan development of dual-task performance in postural tasks. There is evidence that, in older adults, dual-task performance can be improved by training. For the other age groups, these effects have yet to be investigated.


Subject(s)
Aging/physiology , Postural Balance/physiology , Walking/physiology , Adult , Aged , Child , Humans , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...