Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
BMJ Open Sport Exerc Med ; 2(1): e000089, 2016.
Article in English | MEDLINE | ID: mdl-27900165

ABSTRACT

BACKGROUND: To evaluate the ability of community-based exercise programmes to facilitate public participation in exercise and hence improved cardiovascular health, we assessed the respective impacts of: a continuously monitored exercise programme based within our university (study 1); a Valleys Regional Park-facilitated community-based outdoor exercise programme (study 2); a Wales National Exercise Referral Scheme-delivered exercise-referral programme (study 3). METHODS: Biomolecular (monocytic PPARγ target gene expression), vascular haemodynamic (central/peripheral blood pressure, arterial stiffness), clinical (insulin sensitivity, blood lipids) and anthropometric (body mass index, waist circumference, heart rate) parameters were investigated using RT-PCR, applanation tonometry, chemical analysis and standard anthropometric techniques. RESULTS: In studies 1-3, 22/28, 32/65 and 11/14 participants adhered to their respective exercise programmes, and underwent significant increases in physical activity levels. Importantly, beneficial effects similar to those seen in our previous studies (eg, modulations in expression of monocytic PPARγ target genes, decreases in blood pressure/arterial stiffness, improvements in blood lipids/insulin sensitivity) were observed (albeit to slightly differing extents) only in participants who adhered to their respective exercise programmes. While study 1 achieved more intense exercise and more pronounced beneficial effects, significant cardiovascular risk-lowering health benefits related to biomolecular markers, blood pressure, arterial stiffness and blood lipids were achieved via community/referral-based delivery modes in studies 2 and 3. CONCLUSIONS: Because cardiovascular health benefits were observed in all 3 studies, we conclude that the majority of benefits previously reported in laboratory-based studies can also be achieved in community-based/exercise-referral settings. These findings may be of use in guiding policymakers with regard to introduction and/or continued implementation of community/referral-based exercise programmes.

2.
Eur J Appl Physiol ; 116(8): 1511-7, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27270706

ABSTRACT

PURPOSE: Sprint interval training (SIT) provides a potent stimulus for improving maximal aerobic capacity ([Formula: see text]), which is among the strongest markers for future cardiovascular health and premature mortality. Cycling-based SIT protocols involving six or more 'all-out' 30-s Wingate sprints per training session improve [Formula: see text], but we have recently demonstrated that similar improvements in [Formula: see text] can be achieved with as few as two 20-s sprints. This suggests that the volume of sprint exercise has limited influence on subsequent training adaptations. Therefore, the aim of the present study was to examine whether a single 20-s cycle sprint per training session can provide a sufficient stimulus for improving [Formula: see text]. METHODS: Thirty sedentary or recreationally active participants (10 men/20 women; mean ± SD age: 24 ± 6 years, BMI: 22.6 ± 4.0 kg m(-2), [Formula: see text]: 33 ± 7 mL kg(-1) min(-1)) were randomised to a training group or a no-intervention control group. Training involved three exercise sessions per week for 4 weeks, consisting of a single 20-s Wingate sprint (no warm-up or cool-down). [Formula: see text] was determined prior to training and 3 days following the final training session. RESULTS: Mean [Formula: see text] did not significantly change in the training group (2.15 ± 0.62 vs. 2.22 ± 0.64 L min(-1)) or the control group (2.07 ± 0.69 vs. 2.08 ± 0.68 L min(-1); effect of time: P = 0.17; group × time interaction effect: P = 0.26). CONCLUSION: Although we have previously demonstrated that regularly performing two repeated 20-s 'all-out' cycle sprints provides a sufficient training stimulus for a robust increase in [Formula: see text], our present study suggests that this is not the case when training sessions are limited to a single sprint.


Subject(s)
Exercise Tolerance/physiology , High-Intensity Interval Training/methods , Oxygen Consumption/physiology , Physical Conditioning, Human/methods , Sedentary Behavior , Female , Humans , Male , Physical Fitness/physiology , Treatment Outcome , Young Adult
3.
Eur J Appl Physiol ; 116(9): 1671-82, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27339155

ABSTRACT

PURPOSE: Monocytes may be primed towards differentiation into classically activated M1 macrophages or alternatively activated M2 macrophages. M1 macrophages greatly contribute to the inflammation which promotes insulin resistance, whereas M2 macrophages resolve inflammation. We have previously shown that exercise increases M2 marker expression in mixed mononuclear cells, possibly via activation of the nuclear transcription factor PPARγ. However, these effects have not been demonstrated specifically within monocytes. Thus, we aimed to investigate whether moderate-intensity exercise elicited similar effects on monocytic M1/M2 marker expression and PPARγ activity to those reported previously in mononuclear cells, so as to further elucidate the mechanisms by which exercise may alter inflammatory status and, accordingly, prevent insulin resistance. METHODS/RESULTS: 19 sedentary females completed an 8 week moderate-intensity exercise programme (walking 45 min, thrice weekly). Monocytes were isolated from blood via immunomagnetic separation; monocyte expression of M2 markers (Dectin-1: 2.6 ± 1.9-fold; IL-10: 3.0 ± 2.8-fold) significantly increased, whilst the expression of the M1 marker MCP-1 significantly decreased (0.83 ± 0.2 cf. basal), over the duration of the programme. Serum PPARγ activity levels and PPARγ target-genes (CD36: 1.9 ± 1.5-fold; LXRα: 5.0 ± 4.7-fold) were significantly increased after the 8 week exercise programme. Associated with these effects were significant improvements in systemic insulin sensitivity (McAuley's ISI: Δ0.98 M/mU/L cf. basal). CONCLUSION: Exercise participation suppressed M1 markers and induced M2 markers in monocytes, potentially via PPARγ-triggered signalling, and these effects may contribute (perhaps via priming of monocytes for differentiation into M2 tissue-macrophages) to improved systemic insulin sensitivity in exercising participants. These findings provide an alternative mechanism by which exercise may exert its anti-inflammatory effects in order to prevent insulin resistance and type 2 diabetes.


Subject(s)
Exercise/physiology , Inflammation Mediators/immunology , Monocytes/cytology , Monocytes/immunology , PPAR gamma/immunology , Physical Exertion/immunology , Adult , Biomarkers/blood , Cell Differentiation/immunology , Female , Humans , Inflammation Mediators/blood , Monocytes/classification , PPAR gamma/blood
4.
Eur J Appl Physiol ; 115(11): 2321-34, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26156806

ABSTRACT

PURPOSE: We have previously shown that 6 weeks of reduced-exertion high-intensity interval training (REHIT) improves VO2max in sedentary men and women and insulin sensitivity in men. Here, we present two studies examining the acute physiological and molecular responses to REHIT. METHODS: In Study 1, five men and six women (age: 26 ± 7 year, BMI: 23 ± 3 kg m(-2), VO2max: 51 ± 11 ml kg(-1) min(-1)) performed a single 10-min REHIT cycling session (60 W and two 20-s 'all-out' sprints), with vastus lateralis biopsies taken before and 0, 30, and 180 min post-exercise for analysis of glycogen content, phosphorylation of AMPK, p38 MAPK and ACC, and gene expression of PGC1α and GLUT4. In Study 2, eight men (21 ± 2 year; 25 ± 4 kg·m(-2); 39 ± 10 ml kg(-1) min(-1)) performed three trials (REHIT, 30-min cycling at 50 % of VO2max, and a resting control condition) in a randomised cross-over design. Expired air, venous blood samples, and subjective measures of appetite and fatigue were collected before and 0, 15, 30, and 90 min post-exercise. RESULTS: Acutely, REHIT was associated with a decrease in muscle glycogen, increased ACC phosphorylation, and activation of PGC1α. When compared to aerobic exercise, changes in VO2, RER, plasma volume, and plasma lactate and ghrelin were significantly more pronounced with REHIT, whereas plasma glucose, NEFAs, PYY, and measures of appetite were unaffected. CONCLUSIONS: Collectively, these data demonstrate that REHIT is associated with a pronounced disturbance of physiological homeostasis and associated activation of signalling pathways, which together may help explain previously observed adaptations once considered exclusive to aerobic exercise.


Subject(s)
Adaptation, Physiological/physiology , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Physical Conditioning, Human/physiology , Adenylate Kinase/metabolism , Adult , Female , Glycogen/metabolism , Humans , Lactic Acid/metabolism , Male , Phosphorylation , Physical Exertion/physiology , Signal Transduction/physiology , Young Adult , p38 Mitogen-Activated Protein Kinases/metabolism
5.
J Appl Physiol (1985) ; 112(5): 806-15, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22174394

ABSTRACT

The aim of the present study was to test the hypotheses that exercise is associated with generation of peroxisome proliferator-activated receptor-γ (PPARγ) ligands in the plasma and that this may activate PPARγ signaling within circulating monocytes, thus providing a mechanism to underpin the exercise-induced antiatherogenic benefits observed in previous studies. A cohort of healthy individuals undertook an 8-wk exercise-training program; samples were obtained before (Pre) and after (Post) standardized submaximal exercise bouts (45 min of cycling at 70% of maximal O(2) uptake, determined at baseline) at weeks 0, 4, and 8. Addition of plasma samples to PPARγ response element (PPRE)-luciferase reporter gene assays showed increased PPARγ activity following standardized exercise bouts (Post/Pre = 1.23 ± 0.10 at week 0, P < 0.05), suggesting that PPARγ ligands were generated during exercise. However, increases in PPARγ/PPRE-luciferase activity in response to the same standardized exercise bout were blunted during the training program (Post/Pre = 1.18 ± 0.14 and 1.10 ± 0.10 at weeks 4 and 8, respectively, P > 0.05 for both), suggesting that the relative intensity of the exercise may affect PPARγ ligand generation. In untrained individuals, specific transient increases in monocyte expression of PPARγ-regulated genes were observed within 1.5-3 h of exercise (1.7 ± 0.4, 2.6 ± 0.4, and 1.4 ± 0.1 fold for CD36, liver X receptor-α, and ATP-binding cassette subfamily A member 1, respectively, P < 0.05), with expression returning to basal levels within 24 h. In contrast, by the end of the exercise program, expression at the protein level of PPARγ target genes had undergone sustained increases that were not associated with an individual exercise bout (e.g., week 8 Pre/week 0 Pre = 2.79 ± 0.61 for CD36, P < 0.05). Exercise is known to upregulate PPARγ-controlled genes to induce beneficial effects in skeletal muscle (e.g., mitochondrial biogenesis and aerobic respiration). We suggest that parallel exercise-induced benefits may occur in monocytes, as monocyte PPARγ activation has been linked to beneficial antidiabetic effects (e.g., exercise-induced upregulation of monocytic PPARγ-controlled genes is associated with reverse cholesterol transport and anti-inflammatory effects). Thus, exercise-triggered monocyte PPARγ activation may constitute an additional rationale for prescribing exercise to type 2 diabetes patients.


Subject(s)
Exercise/physiology , Lipid Metabolism/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , Signal Transduction/physiology , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Adult , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cell Line, Transformed , Cohort Studies , HEK293 Cells , Humans , Immunoglobulin A, Secretory/genetics , Immunoglobulin A, Secretory/metabolism , Ligands , Liver X Receptors , Monocytes/metabolism , Monocytes/physiology , Orphan Nuclear Receptors/metabolism , Signal Transduction/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...