Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 56(16): 2381-2398.e6, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34428401

ABSTRACT

Congenital abnormalities of the kidney and urinary tract are among the most common birth defects, affecting 3% of newborns. The human kidney forms around a million nephrons from a pool of nephron progenitors over a 30-week period of development. To establish a framework for human nephrogenesis, we spatially resolved a stereotypical process by which equipotent nephron progenitors generate a nephron anlage, then applied data-driven approaches to construct three-dimensional protein maps on anatomical models of the nephrogenic program. Single-cell RNA sequencing identified progenitor states, which were spatially mapped to the nephron anatomy, enabling the generation of functional gene networks predicting interactions within and between nephron cell types. Network mining identified known developmental disease genes and predicted targets of interest. The spatially resolved nephrogenic program made available through the Human Nephrogenesis Atlas (https://sckidney.flatironinstitute.org/) will facilitate an understanding of kidney development and disease and enhance efforts to generate new kidney structures.


Subject(s)
Gene Expression Regulation, Developmental , Nephrons/metabolism , Transcriptome , Animals , Humans , Mice , Nephrons/cytology , Nephrons/embryology , Proteome/genetics , Proteome/metabolism , RNA-Seq , Single-Cell Analysis
2.
Dev Cell ; 45(5): 651-660.e4, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29870722

ABSTRACT

Mammalian nephrons arise from a limited nephron progenitor pool through a reiterative inductive process extending over days (mouse) or weeks (human) of kidney development. Here, we present evidence that human nephron patterning reflects a time-dependent process of recruitment of mesenchymal progenitors into an epithelial nephron precursor. Progressive recruitment predicted from high-resolution image analysis and three-dimensional reconstruction of human nephrogenesis was confirmed through direct visualization and cell fate analysis of mouse kidney organ cultures. Single-cell RNA sequencing of the human nephrogenic niche provided molecular insights into these early patterning processes and predicted developmental trajectories adopted by nephron progenitor cells in forming segment-specific domains of the human nephron. The temporal-recruitment model for nephron polarity and patterning suggested by direct analysis of human kidney development provides a framework for integrating signaling pathways driving mammalian nephrogenesis.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Developmental , Mesenchymal Stem Cells/cytology , Nephrons/cytology , Organogenesis/physiology , Animals , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Mesenchymal Stem Cells/metabolism , Mice , Nephrons/metabolism , Signal Transduction , Single-Cell Analysis , Time Factors
3.
J Am Soc Nephrol ; 29(3): 785-805, 2018 03.
Article in English | MEDLINE | ID: mdl-29449453

ABSTRACT

Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species.


Subject(s)
Kidney/embryology , Kidney/metabolism , Organogenesis , Ureter/embryology , Animals , Cell Differentiation , Fluorescent Antibody Technique , Gene Expression Profiling , Gestational Age , Histological Techniques , Humans , In Situ Hybridization , Kidney/anatomy & histology , Mice , Nephrons/embryology , Nephrons/metabolism , RNA/analysis , Ureter/metabolism
5.
ScientificWorldJournal ; 7: 592-604, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17525824

ABSTRACT

We present an archetypal set of three-dimensional digital atlases of the quail embryo based on microscopic magnetic resonance imaging (microMRI). The atlases are composed of three modules: (1) images of fixed ex ovo quail, ranging in age from embryonic day 5 to 10 (e05 to e10); (2) a coarsely delineated anatomical atlas of the microMRI data; and (3) an organ system-based hierarchical graph linked to the anatomical delineations. The atlas is designed to be accessed using SHIVA, a free Java application. The atlas is extensible and can contain other types of information including anatomical, physiological, and functional descriptors. It can also be linked to online resources and references. This digital atlas provides a framework to place various data types, such as gene expression and cell migration data, within the normal three-dimensional anatomy of the developing quail embryo. This provides a method for the analysis and examination of the spatial relationships among the different types of information within the context of the entire embryo.


Subject(s)
Embryo, Nonmammalian/anatomy & histology , Embryo, Nonmammalian/embryology , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Quail/anatomy & histology , Quail/embryology , Animals , Embryo, Nonmammalian/cytology , Sensitivity and Specificity
6.
Curr Opin Neurobiol ; 12(5): 580-6, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12367639

ABSTRACT

Biological problems such as embryonic development require tools to follow cell and tissue movements as well as the distribution of active genes. A variety of emerging imaging techniques offer the capability of fully rendering the three-dimensional structure of the embryo, and some offer the possibility of following changes directly over time. The data sets that result offer both new insights and new challenges. A framework of digital atlases will soon offer the integration of different imaging modalities and permit users to interact with multidimensional data sets.


Subject(s)
Embryo, Mammalian/anatomy & histology , Embryo, Nonmammalian , Imaging, Three-Dimensional , Animals , Embryonic and Fetal Development , Magnetic Resonance Imaging , Microscopy, Confocal , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...