Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Chaos ; 34(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38377287

ABSTRACT

The famous doubling map (or dyadic transformation) is perhaps the simplest deterministic dynamical system exhibiting chaotic dynamics. It is a piecewise linear time-discrete map on the unit interval with a uniform slope larger than one, hence expanding, with a positive Lyapunov exponent and a uniform invariant density. If the slope is less than one, the map becomes contracting, the Lyapunov exponent is negative, and the density trivially collapses onto a fixed point. Sampling from these two different types of maps at each time step by randomly selecting the expanding one with probability p, and the contracting one with probability 1-p, gives a prototype of a random dynamical system. Here, we calculate the invariant density of this simple random map, as well as its position autocorrelation function, analytically and numerically under variation of p. We find that the map exhibits a non-trivial transition from fully chaotic to completely regular dynamics by generating a long-time anomalous dynamics at a critical sampling probability pc, defined by a zero Lyapunov exponent. This anomalous dynamics is characterized by an infinite invariant density, weak ergodicity breaking, and power-law correlation decay.

2.
Phys Rev E ; 108(2-1): 024115, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37723711

ABSTRACT

We perform a numerical study of transport properties of a one-dimensional chain with couplings decaying as an inverse power r^{-(1+σ)} of the intersite distance r and open boundary conditions, interacting with two heat reservoirs. Despite its simplicity, the model displays highly nontrivial features in the strong long-range regime -1<σ<0. At weak coupling with the reservoirs, the energy flux departs from the predictions of perturbative theory and displays anomalous superdiffusive scaling of the heat current with the chain size. We trace this behavior back to the transmission spectrum of the chain, which displays a self-similar structure with a characteristic σ-dependent fractal dimension.

3.
Entropy (Basel) ; 25(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36981426

ABSTRACT

We study the transition from integrability to chaos for the three-particle Fermi-Pasta-Ulam-Tsingou (FPUT) model. We can show that both the quartic ß-FPUT model (α=0) and the cubic one (ß=0) are integrable by introducing an appropriate Fourier representation to express the nonlinear terms of the Hamiltonian. For generic values of α and ß, the model is non-integrable and displays a mixed phase space with both chaotic and regular trajectories. In the classical case, chaos is diagnosed by the investigation of Poincaré sections. In the quantum case, the level spacing statistics in the energy basis belongs to the Gaussian orthogonal ensemble in the chaotic regime, and crosses over to Poissonian behavior in the quasi-integrable low-energy limit. In the chaotic part of the spectrum, two generic observables obey the eigenstate thermalization hypothesis.

4.
Phys Rev E ; 106(2-1): 024109, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109914

ABSTRACT

Engineering long-range interactions in experimental platforms has been achieved with great success in a large variety of quantum systems in recent years. Inspired by this progress, we propose a generalization of the classical Hamiltonian mean-field model to fermionic particles. We study the phase diagram and thermodynamic properties of the model in the canonical ensemble for ferromagnetic interactions as a function of temperature and hopping. At zero temperature, small charge fluctuations drive the many-body system through a first-order quantum phase transition from an ordered to a disordered phase. At higher temperatures, the fluctuation-induced phase transition remains first order initially and switches to second-order only at a tricritical point. Our results offer an intriguing example of tricriticality in a quantum system with long-range couplings, which bears direct experimental relevance. The analysis is performed by exact diagonalization and mean-field theory.

5.
Phys Rev Lett ; 129(11): 114101, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36154422

ABSTRACT

We prove analytically and show numerically that the dynamics of the Fermi-Pasta-Ulam-Tsingou chain is characterized by a transient Burgers turbulence regime on a wide range of time and energy scales. This regime is present at long wavelengths and energy per particle small enough that equipartition is not reached on a fast timescale. In this range, we prove that the driving mechanism to thermalization is the formation of a shock that can be predicted using a pair of generalized Burgers equations. We perform a perturbative calculation at small energy per particle, proving that the energy spectrum of the chain E_{k} decays as a power law, E_{k}∼k^{-ζ(t)}, on an extensive range of wave numbers k. We predict that ζ(t) takes first the value 8/3 at the Burgers shock time, and then reaches a value close to 2 within two shock times. The value of the exponent ζ=2 persists for several shock times before the system eventually relaxes to equipartition. During this wide time window, an exponential cutoff in the spectrum is observed at large k, in agreement with previous results. Such a scenario turns out to be universal, i.e., independent of the parameters characterizing the system and of the initial condition, once time is measured in units of the shock time.

6.
Phys Rev Lett ; 127(15): 156801, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34678026

ABSTRACT

The Berezinskii-Kosterlitz-Thouless (BKT) transition is the paradigmatic example of a topological phase transition without symmetry breaking, where a quasiordered phase, characterized by a power-law scaling of the correlation functions at low temperature, is disrupted by the proliferation of topological excitations above the critical temperature T_{BKT}. In this Letter, we consider the effect of long-range decaying couplings ∼r^{-2-σ} on the BKT transition. After pointing out the relevance of this nontrivial problem, we discuss the phase diagram, which is far richer than the corresponding short-range one. It features-for 7/4<σ<2-a quasiordered phase in a finite temperature range T_{c}T_{BKT}. The transition temperature T_{c} displays unique universal features quite different from those of the traditional, short-range XY model. Given the universal nature of our findings, they may be observed in current experimental realizations in 2D atomic, molecular, and optical quantum systems.

7.
Phys Rev E ; 104(3-2): 039901, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654212

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevE.100.052135.

8.
Phys Rev E ; 103(6): L061303, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271684

ABSTRACT

The unconstrained ensemble describes completely open systems whose control parameters are the chemical potential, pressure, and temperature. For macroscopic systems with short-range interactions, thermodynamics prevents the simultaneous use of these intensive variables as control parameters, because they are not independent and cannot account for the system size. When the range of the interactions is comparable with the size of the system, however, these variables are not truly intensive and may become independent, so equilibrium states defined by the values of these parameters may exist. Here, we derive a Monte Carlo algorithm for the unconstrained ensemble and show that simulations can be performed using the chemical potential, pressure, and temperature as control parameters. We illustrate the algorithm by applying it to physical systems where either the system has long-range interactions or is confined by external conditions. The method opens up an avenue for the simulation of completely open systems exchanging heat, work, and matter with the environment.

9.
Phys Rev E ; 101(3-1): 030102, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32290002

ABSTRACT

We study dipolarly coupled three-dimensional spin systems in both the microcanonical and the canonical ensembles by introducing appropriate numerical methods to determine the microcanonical temperature and by realizing a canonical model of heat bath. In the microcanonical ensemble, we show the existence of a branch of stable antiferromagnetic states in the low-energy region. Other metastable ferromagnetic states exist in this region: by externally perturbing them, an effective negative specific heat is obtained. In the canonical ensemble, for low temperatures, the same metastable states are unstable and reach a new branch of more robust metastable states which is distinct from the stable one. Our statistical physics approach allows us to put some order in the complex structure of stable and metastable states of dipolar systems.

10.
Phys Rev E ; 100(5-1): 052135, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31869874

ABSTRACT

The canonical phase diagram of the Blume-Emery-Griffiths model with infinite-range interactions is known to exhibit a fourth-order critical point at some negative value of the biquadratic interaction K<0. Here we study the microcanonical phase diagram of this model for K<0, extending previous studies which were restricted to positive K. A fourth-order critical point is found to exist at coupling parameters which are different from those of the canonical ensemble. The microcanonical phase diagram of the model close to the fourth-order critical point is studied in detail revealing some distinct features from the canonical counterpart.

11.
Phys Rev Lett ; 123(18): 184301, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31763893

ABSTRACT

We study synchronization between periodically driven, interacting classical spins undergoing a Hamiltonian dynamics. In the thermodynamic limit there is a transition between a regime where all the spins oscillate synchronously for an infinite time with a period twice the driving period (synchronized regime) and a regime where the oscillations die after a finite transient (chaotic regime). We emphasize the peculiarity of our result, having been synchronization observed so far only in driven-dissipative systems. We discuss how our findings can be interpreted as a period-doubling time crystal and we show that synchronization can appear both for an overall regular and overall chaotic dynamics.

12.
Entropy (Basel) ; 20(12)2018 Nov 28.
Article in English | MEDLINE | ID: mdl-33266631

ABSTRACT

In nonadditive systems, like small systems or like long-range interacting systems even in the thermodynamic limit, ensemble inequivalence can be related to the occurrence of negative response functions, this in turn being connected with anomalous concavity properties of the thermodynamic potentials associated with the various ensembles. We show how the type and number of negative response functions depend on which of the quantities E, V and N (energy, volume and number of particles) are constrained in the ensemble. In particular, we consider the unconstrained ensemble in which E, V and N fluctuate, which is physically meaningful only for nonadditive systems. In fact, its partition function is associated with the replica energy, a thermodynamic function that identically vanishes when additivity holds, but that contains relevant information in nonadditive systems.

13.
Phys Rev E ; 95(1-1): 012140, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208311

ABSTRACT

Completely open systems can exchange heat, work, and matter with the environment. While energy, volume, and number of particles fluctuate under completely open conditions, the equilibrium states of the system, if they exist, can be specified using the temperature, pressure, and chemical potential as control parameters. The unconstrained ensemble is the statistical ensemble describing completely open systems and the replica energy is the appropriate free energy for these control parameters from which the thermodynamics must be derived. It turns out that macroscopic systems with short-range interactions cannot attain equilibrium configurations in the unconstrained ensemble, since temperature, pressure, and chemical potential cannot be taken as a set of independent variables in this case. In contrast, we show that systems with long-range interactions can reach states of thermodynamic equilibrium in the unconstrained ensemble. To illustrate this fact, we consider a modification of the Thirring model and compare the unconstrained ensemble with the canonical and grand-canonical ones: The more the ensemble is constrained by fixing the volume or number of particles, the larger the space of parameters defining the equilibrium configurations.

14.
Phys Rev Lett ; 114(23): 230601, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26196786

ABSTRACT

The usual formulation of thermodynamics is based on the additivity of macroscopic systems. However, there are numerous examples of macroscopic systems that are not additive, due to the long-range character of the interaction among the constituents. We present here an approach in which nonadditive systems can be described within a purely thermodynamics formalism. The basic concept is to consider a large ensemble of replicas of the system where the standard formulation of thermodynamics can be naturally applied and the properties of a single system can be consequently inferred. After presenting the approach, we show its implementation in systems where the interaction decays as 1/r(α) in the interparticle distance r, with α smaller than the embedding dimension d, and in the Thirring model for gravitational systems.

15.
Article in English | MEDLINE | ID: mdl-25871192

ABSTRACT

We study instabilities and relaxation to equilibrium in a long-range extension of the Fermi-Pasta-Ulam-Tsingou (FPU) oscillator chain by exciting initially the lowest Fourier mode. Localization in mode space is stronger for the long-range FPU model. This allows us to uncover the sporadic nature of instabilities, i.e., by varying initially the excitation amplitude of the lowest mode, which is the control parameter, instabilities occur in narrow amplitude intervals. Only for sufficiently large values of the amplitude, the system enters a permanently unstable regime. These findings also clarify the long-standing problem of the relaxation to equilibrium in the short-range FPU model. Because of the weaker localization in mode space of this latter model, the transfer of energy is retarded and relaxation occurs on a much longer timescale.

16.
Article in English | MEDLINE | ID: mdl-25353438

ABSTRACT

We study the dynamics of a system of coupled oscillators of distributed natural frequencies, by including the features of both thermal noise, parametrized by a temperature, and inertial terms, parametrized by a moment of inertia. For a general unimodal frequency distribution, we report here the complete phase diagram of the model in the space of dimensionless moment of inertia, temperature, and width of the frequency distribution. We demonstrate that the system undergoes a nonequilibrium first-order phase transition from a synchronized phase at low parameter values to an incoherent phase at high values. We provide strong numerical evidence for the existence of both the synchronized and the incoherent phase, treating the latter analytically to obtain the corresponding linear stability threshold that bounds the first-order transition point from below. In the limit of zero noise and inertia, when the dynamics reduces to the one of the Kuramoto model, we recover the associated known continuous transition. At finite noise and inertia but in the absence of natural frequencies, the dynamics becomes that of a well-studied model of long-range interactions, the Hamiltonian mean-field model. Close to the first-order phase transition, we show that the escape time out of metastable states scales exponentially with the number of oscillators, which we explain to be stemming from the long-range nature of the interaction between the oscillators.


Subject(s)
Biological Clocks/physiology , Feedback, Physiological/physiology , Models, Biological , Models, Statistical , Phase Transition , Animals , Computer Simulation , Humans , Nonlinear Dynamics
17.
Article in English | MEDLINE | ID: mdl-25353725

ABSTRACT

The classical wave-particle Hamiltonian is considered in its generalized version, where two modes are assumed to interact with the coevolving charged particles. The equilibrium statistical mechanics solution of the model is worked out analytically, both in the canonical and the microcanonical ensembles. The competition between the two modes is shown to yield ensemble inequivalence, at variance with the standard scenario where just one wave is allowed to develop. As a consequence, both temperature jumps and negative specific heat can show up in the microcanonical ensemble. The relevance of these findings for both plasma physics and free electron laser applications is discussed.

18.
Article in English | MEDLINE | ID: mdl-25615078

ABSTRACT

We explore ensemble inequivalence in long-range interacting systems by studying an XY model of classical spins with ferromagnetic and nematic coupling. We demonstrate the inequivalence by mapping the microcanonical phase diagram onto the canonical one, and also by doing the inverse mapping. We show that the equilibrium phase diagrams within the two ensembles strongly disagree within the regions of first-order transitions, exhibiting interesting features like temperature jumps. In particular, we discuss the coexistence and forbidden regions of different macroscopic states in both the phase diagrams.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 2): 066201, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23005190

ABSTRACT

We study synchronization in a system of phase-only oscillators residing on the sites of a one-dimensional periodic lattice. The oscillators interact with a strength that decays as a power law of the separation along the lattice length and is normalized by a size-dependent constant. The exponent α of the power law is taken in the range 0≤α<1. The oscillator frequency distribution is symmetric about its mean (taken to be zero) and is nonincreasing on [0,∞). In the continuum limit, the local density of oscillators evolves in time following the continuity equation that expresses the conservation of the number of oscillators of each frequency under the dynamics. This equation admits as a stationary solution the unsynchronized state uniform both in phase and over the space of the lattice. We perform a linear stability analysis of this state to show that when it is unstable, different spatial Fourier modes of fluctuations have different stability thresholds beyond which they grow exponentially in time with rates that depend on the Fourier modes. However, numerical simulations show that at long times all the nonzero Fourier modes decay in time, while only the zero Fourier mode (i.e., the "mean-field" mode) grows in time, thereby dominating the instability process and driving the system to a synchronized state. Our theoretical analysis is supported by extensive numerical simulations.


Subject(s)
Biological Clocks/physiology , Models, Biological , Oscillometry/methods , Animals , Computer Simulation , Fourier Analysis , Humans
20.
PLoS One ; 7(6): e38767, 2012.
Article in English | MEDLINE | ID: mdl-22761703

ABSTRACT

Predicting the biological function of all the genes of an organism is one of the fundamental goals of computational system biology. In the last decade, high-throughput experimental methods for studying the functional interactions between gene products (GPs) have been combined with computational approaches based on Bayesian networks for data integration. The result of these computational approaches is an interaction network with weighted links representing connectivity likelihood between two functionally related GPs. The weighted network generated by these computational approaches can be used to predict annotations for functionally uncharacterized GPs. Here we introduce Weighted Network Predictor (WNP), a novel algorithm for function prediction of biologically uncharacterized GPs. Tests conducted on simulated data show that WNP outperforms other 5 state-of-the-art methods in terms of both specificity and sensitivity and that it is able to better exploit and propagate the functional and topological information of the network. We apply our method to Saccharomyces cerevisiae yeast and Arabidopsis thaliana networks and we predict Gene Ontology function for about 500 and 10000 uncharacterized GPs respectively.


Subject(s)
Algorithms , Arabidopsis Proteins/genetics , Molecular Sequence Annotation , Protein Interaction Mapping , Saccharomyces cerevisiae Proteins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/classification , Arabidopsis Proteins/metabolism , Bayes Theorem , Computational Biology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/classification , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...