Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 47(1): 5-9, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20420851

ABSTRACT

Lipases from different sources, Pseudomonas fluorescens (AK lipase), Burkholderia cepacia (PS lipase), Penicillium camembertii (lipase G) and Porcine pancreas lipase (PPL), previously immobilized on epoxy SiO(2)-PVA, were screened for the synthesis of xylitol monoesters by esterification of the protected xylitol using oleic acid as acyl donor group. Among all immobilized derivatives, the highest esterification yield was achieved by P. camembertii lipase, showing to be attractive alternative to bulk chemical routes to satisfy increasing commercial demands. Further experiments were performed to determine the influence of fatty acids chain size on the reaction yield and the feasibility of using non-conventional heating systems (microwave and ultrasound irradiations) to enhance the reaction rate.


Subject(s)
Enzymes, Immobilized/chemistry , Lipase/chemistry , Oleic Acids/chemical synthesis , Xylitol/chemistry , Animals , Burkholderia cepacia/enzymology , Esters/chemical synthesis , Fungal Proteins , Microwaves , Penicillium/enzymology , Pseudomonas fluorescens/enzymology , Sound , Swine
2.
J Chem Inf Model ; 45(3): 645-51, 2005.
Article in English | MEDLINE | ID: mdl-15921454

ABSTRACT

This paper describes the use of artificial neural networks as a theoretical tool in the structural determination of alkaloids from (13)C NMR chemical shift data, aiming to identify skeletal types of those compounds. For that, 162 aporphine alkaloids belonging to 12 different skeletons were codified with their respective (13)C NMR chemical shifts. Each skeleton pertaining to aporphine alkaloid type was used as output, and the (13)C NMR chemical shifts were used as input data of the net. Analyzing the obtained results, one can then affirm the skeleton to which each one of these compounds belongs with high degree of confidence (over 97%). The relation between the correlation coefficient and the number of epochs and the architecture of net (3-layer MLP or 4-layer MLP) were analyzed, too. The analysis showed that the results predicted by the 3-layer MLP networks trained with a number of the epochs higher than 900 epochs are the best ones. The artificial neural nets were shown to be a simple and efficient tool to solve structural elucidation problems making use of (13)C NMR chemical shift data, even when a similarity between the searched skeletons occurs, offering fast and accurate results to identification of skeletons of organic compounds.


Subject(s)
Alkaloids/chemistry , Aporphines/chemistry , Magnetic Resonance Spectroscopy
3.
Phytochem Anal ; 15(6): 389-96, 2004.
Article in English | MEDLINE | ID: mdl-15595455

ABSTRACT

The training and the application of a neural network system for the prediction of occurrences of secondary metabolites belonging to diverse chemical classes in the Asteraceae is described. From a database containing about 604 genera and 28,000 occurrences of secondary metabolites in the plant family, information was collected encompassing nine chemical classes and their respective occurrences for training of a multi-layer net using the back-propagation algorithm. The net supplied as output the presence or absence of the chemical classes as well as the number of compounds isolated from each taxon. The results provided by the net from the presence or absence of a chemical class showed a 89% hit rate; by excluding triterpenes from the analysis, only 5% of the genera studied exhibited errors greater than 10%.


Subject(s)
Asteraceae/chemistry , Neural Networks, Computer , Chemistry Techniques, Analytical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...