Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 90(4): 501-510, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28267894

ABSTRACT

Leishmaniasis, a protozoan-caused disease, requires alternative treatments with minimized side-effects and less prone to resistance development. Antimicrobial peptides represent a possible choice to be developed. We report on the prospection of structural parameters of 23 helical antimicrobial and leishmanicidal peptides as a tool for modeling and predicting the activity of new peptides. This investigation is based on molecular dynamic simulations (MD) in mimetic membrane environment, as most of these peptides share the feature of interacting with phospholipid bilayers. To overcome the lack of experimental data on peptides' structures, we started simulations from designed 100% α-helices. This procedure was validated through comparisons with NMR data and the determination of the structure of Decoralin-amide. From physicochemical features and MD results, descriptors were raised and statistically related to the minimum inhibitory concentration against Leishmania by the multivariate data analysis technique. This statistical procedure confirmed five descriptors combined by different loadings in five principal components. The leishmanicidal activity depends on peptides' charge, backbone solvation, volume, and solvent-accessible surface area. The generated model possesses good predictability (q2  = 0.715, r2  = 0.898) and is indicative for the most and the least active peptides. This is a novel theoretical path for structure-activity studies combining computational methods that identify and prioritize the promising peptide candidates.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Drug Design , Humans , Leishmaniasis/drug therapy , Molecular Dynamics Simulation , Multivariate Analysis
2.
Biochemistry ; 54(13): 2262-9, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25777778

ABSTRACT

Protonectin (ILGTILGLLKGL-NH2), a peptide extracted from the venom of the wasp Agelaia pallipes pallipes, promotes mast cell degranulation activity, antibiosis against Gram-positive and -negative bacteria, and chemotaxis in polymorphonucleated leukocytes. Another peptide from the same venom, Protonectin (1-6), corresponding to the first six residues of Protonectin, exhibits only chemotaxis. A 1:1 mixture of these two peptides showed positive synergistic antimicrobial effects, attributed to the formation of a heterodimer.16 The antimicrobial activity is probably related to the peptides' interaction with membrane phospholipids. Equilibrium and replica exchange molecular dynamics simulations were used to investigate two systems: the interaction of Protonectins (two molecules) and that of a mixture Protonectin and Protonectin (1-6) in the environment of sodium dodecyl sulfate (SDS) micelles, which mimic bacterial membranes and are also highly anionic. We found that in both systems the peptides tend to aggregate in the aqueous environment and are held together by hydrophobic interactions and hydrogen bonds. In the equilibrium simulations, aggregated Protonectin/Protonectin (1-6) dissociates after penetrating the SDS micelle, whereas the two Protonectins remain associated throughout the simulation time. Also, in the replica exchange simulations, the Protonectins remain closer, associating through a greater number of hydrogen bonds, and were found at only one free energy minimum, whereas the peptides in the mixture display other probable distances from each other, which are significantly longer than those observed with two Protonectin molecules. Coulomb contributions and the free energy of the systems containing micelles were calculated and show that the interactions of the mixed peptides are favored, whereas the interactions between pure Protonectins are more probable. As a consequence of the preferential interaction with the micelle, the Protonectin molecule of the mixed system presents a higher helical structure content. The enhancement of the amphipathic features caused by Protonectin (1-6) can be related to the increase in the antimicrobial activity experimentally observed.


Subject(s)
Oligopeptides/chemistry , Wasp Venoms/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Micelles , Models, Molecular , Molecular Dynamics Simulation , Oligopeptides/metabolism , Oligopeptides/pharmacology , Sodium Dodecyl Sulfate/chemistry , Structure-Activity Relationship , Wasp Venoms/metabolism , Wasp Venoms/pharmacology
3.
Biochemistry ; 53(29): 4857-68, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-24971729

ABSTRACT

Jelleines are four naturally occurring peptides that comprise approximately eight or nine C-terminal residues in the sequence of the major royal jelly protein 1 precursor (Apis mellifera). The difference between these peptides is limited to one residue in the sequence, but this residue has a significant impact in their efficacy as antimicrobials. In peptide-bilayer experiments, we demonstrated that the lytic, pore-forming activity of Jelleine-I is similar to that of other cationic antimicrobial peptides, which exhibit stronger activity on anionic bilayers. Results from molecular dynamics simulations suggested that the presence of a proline residue at the first position is the underlying reason for the higher efficacy of Jelleine-I compared with the other jelleines. Additionally, simulations suggested that Jelleine-I tends to form aggregates in water and in the presence of mimetic membrane environments. Combined experimental evidence and simulations showed that the protonation of the histidine residue potentiates the interaction with anionic palmitoyl-oleoyl-phosphatidylcholine/palmitoyl-oleoyl-phosphatidylglycerol (POPC/POPG) (70:30) bilayers and reduces the free energy barrier for water passage. The interaction is driven by electrostatic interactions with the headgroup region of the bilayer with some disturbance of the acyl chain region. Our findings point to a mechanism of action by which aggregated Jelleine-I accumulates on the headgroup region of the membrane. Remaining in this form, Jelleine-I could exert pressure to accommodate its polar and nonpolar residues on the amphiphilic environment of the membrane. This pressure could open pores or defects, could disturb the bilayer continuity, and leakage would be observed. The agreement between experimental data and simulations in mimetic membranes suggests that this approach may be a valuable tool to the understanding of the molecular mechanisms of action.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Molecular Dynamics Simulation , Oligopeptides/chemistry , Lipid Bilayers/chemistry , Permeability , Structure-Activity Relationship
4.
Eur Biophys J ; 37(6): 879-91, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18414845

ABSTRACT

Many potent antimicrobial peptides also present hemolytic activity, an undesired collateral effect for the therapeutic application. Unlike other mastoparan peptides, Polybia-MP1 (IDWKKLLDAAKQIL), obtained from the venom of the social wasp Polybia paulista, is highly selective of bacterial cells. The study of its mechanism of action demonstrated that it permeates vesicles at a greater rate of leakage on the anionic over the zwitterionic, impaired by the presence of cholesterol or cardiolipin; its lytic activity is characterized by a threshold peptide to lipid molar ratio that depends on the phospholipid composition of the vesicles. At these particular threshold concentrations, the apparent average pore number is distinctive between anionic and zwitterionic vesicles, suggesting that pores are similarly formed depending on the ionic character of the bilayer. To prospect the molecular reasons for the strengthened selectivity in Polybia-MP1 and its absence in Mastoparan-X, MD simulations were carried out. Both peptides presented amphipathic alpha-helical structures, as previously observed in Circular Dichroism spectra, with important differences in the extension and stability of the helix; their backbone solvation analysis also indicate a different profile, suggesting that the selectivity of Polybia-MP1 is a consequence of the distribution of the charged and polar residues along the peptide helix, and on how the solvent molecules orient themselves according to these electrostatic interactions. We suggest that the lack of hemolytic activity of Polybia-MP1 is due to the presence and position of Asp residues that enable the equilibrium of electrostatic interactions and favor the preference for the more hydrophilic environment.


Subject(s)
Lipid Bilayers/chemistry , Liposomes/chemistry , Models, Chemical , Models, Molecular , Peptides/chemistry , Wasp Venoms/chemistry , Anti-Infective Agents/chemistry , Computer Simulation , Diffusion , Intercellular Signaling Peptides and Proteins , Porosity , Protein Conformation
5.
J Pept Sci ; 14(6): 661-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17994639

ABSTRACT

Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide's primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside.


Subject(s)
Amides/chemistry , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Wasp Venoms/pharmacology , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Circular Dichroism , Lipid Bilayers , Wasp Venoms/chemistry
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(2 Pt 2): 026213, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15447571

ABSTRACT

We study energy localization on the oscillator chain proposed by Peyrard and Bishop to model DNA. We search numerically for conditions with initial energy in a small subgroup of consecutive oscillators of a finite chain and such that the oscillation amplitude is small outside this subgroup on a long time scale. We use a localization criterion based on the information entropy and verify numerically that such localized excitations exist when the nonlinear dynamics of the subgroup oscillates with a frequency inside the reactive band of the linear chain. We predict a mimium value for the Morse parameter (micro>2.25) (the only parameter of our normalized model), in agreement with the numerical calculations (an estimate for the biological value is micro=6.3 ). For supercritical masses, we use canonical perturbation theory to expand the frequencies of the subgroup and we calculate an energy threshold in agreement with the numerical calculations.


Subject(s)
Biophysics/methods , DNA/chemistry , Models, Statistical , Models, Theoretical , Nucleic Acid Conformation , Oscillometry
SELECTION OF CITATIONS
SEARCH DETAIL
...