Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hemoglobin ; 40(2): 75-84, 2016.
Article in English | MEDLINE | ID: mdl-26635043

ABSTRACT

We review and report here the genotypes and phenotypes of 60 novel thalassemia and abnormal hemoglobin (Hb) mutations discovered following the adoption of routine DNA sequencing of both α- and ß-globin genes for all UK hemoglobinopathy samples referred for molecular investigation. This screening strategy over the last 10 years has revealed a total of 11 new ß chain variants, 15 α chain variants, 19 ß-thalassemia (ß-thal) mutations and 15 α(+)-thalassemia (α(+)-thal) mutations. The large number of new thalassemia alleles confirms the wide racial heterogeneity of mutations in the UK immigrant population. Eleven of the new variants ran with Hb A on high performance liquid chromatography (HPLC), demonstrating the value of routine sequencing of both α- and ß-globin genes for all hemoglobinopathy investigations. The new ß chain variants are: Hb Bury [ß22(B4)Glu → Asp (HBB: c.69A > T)], Hb Fulwood [ß35(C1)Tyr → His (HBB: c.106T > C)], Hb Little Venice [ß42(CD1)Phe → Cys (HBB: c.128T > G)], Hb Cork [ß57(E1)Asn → Ser (HBB: c.173A > G), Hb Basingstoke [ß118(GH1)Phe → Ser (HBB: c.356T > C)], Hb Howden [ß20(B2)Val → Ala (HBB: c.62T > C)], Hb Wilton [ß41(C7)Phe → Leu (HBB: c.126C > A)], Hb Belsize Park [ß120(GH3)Lys → Asn (HBB: c.363A > T)], Hb Hampstead Heath [ß2(NA2)His → Gln;ß26(B8)Glu → Lys (HBB: c.[6C > G;79G > A])], Hb Grantham [ß85(F1)Phe → Cys (HBB: c.257T > G)] and Hb Calgary [ß64(E8)Gly → Val (HBB: c.194G > T). The new α chain variants are: Hb Edinburgh [α70(E19)Val → Gly (HBA2: c.212T > G)], Hb Walsgrave [α116(GH4)Glu → Val (HBA2: c.350A > T)], Hb Wexham [α117(GH5) and 118(H1) insertion Ser (HBA1: c.354-355insTCA)], Hb Coombe Park [α127(H10)Lys → Glu (HBA2: c.382A > G)], Hb Oxford [α17(A15)Val → Asp (HBA2: c.53T > A)], Hb Bridlington [α32(B13)Met → Thr (HBA1: c.98T > C), Hb Wolverhampton [α81(F2)Ser → Tyr (HBA2: c.9245C > A)], Hb Little Waltham [α13(A11)Ala → Asp (HBA2: c.41C > A)], Hb Derby [α61(E10)Lys → Arg (HBA1: c.185A > G)], Hb Uttoxter [α74(EF3)Tyr → Asp (HBA2: c.223G > T)], Hb Harehills [α124(H7)Ser → Cys (HBA1: c.374C > G)], Hb Hekinan II [α27(B8)Glu → Asp (HBA1: c.84G > T)], Hb Manitoba IV [α102(G9)Ser → Arg (HBA1: c.307A > C), Hb Witham [α139(HC1)Lys → Arg (HBA2: c.419A > G) and Hb Farnborough [α9(A7)Asn → Asp (HBA1: c.28A > G). In addition, 10 more paralogous α-globin chain variants have been discovered. The novel ß-thal alleles are: HBB: c.-138C > G, HBB: c.-121C > T, HBB: c.-80T > G, HBB: c.18_19delTG, HBB: c.219_220insT, HBB: c.315 + 2_315 + 13delTGAGTCTATGGG, HBB: c.316-70C > G, HBB: c.345_346insTGTGCTG, HBB: c.354delC, HBB: c.376-381delCCAGTG, HBB: c.393T > A, HBB: c.394_395insA, HBB: c.375_376insA, HBB: c.*+95_*+107delTGGATTCTinsC, HBB: c.* + 111_*+112delAA, HBB: c.*+112A > T, HBB: c.394C > T, HBB: c.271delG and HBB: c.316-3C > T. The novel α (+ )-thal alleles are: HBA1: c.95+1G > C, HBA1: c.315C > G [Hb Donnington, α104(G11)Cys → Trp], HBA1: c.327delC, HBA1: c.333_345del, HBA1: c.*+96G > A, HBA2: c.2T > G, HBA2: c.112delC, HBA2: c.143delA, HBA2: c.143_146delACCT, HBA2: c.156_157insG, HBA2: c.220_223delGTGG, HBA2: c.305T > C [Hb Bishopstown, α101(G8)Leu → His], HBA2: c.169_170delAA, HBA2: c.1A > T and HBA2: c.-3delA.


Subject(s)
Hemoglobinopathies/genetics , Mutation , alpha-Globins/genetics , beta-Globins/genetics , Alleles , Amino Acid Substitution , Genetic Association Studies , Genotype , Hemoglobinopathies/diagnosis , Hemoglobinopathies/epidemiology , Humans , Phenotype , Referral and Consultation , Sequence Analysis, DNA , United Kingdom/epidemiology , alpha-Thalassemia/diagnosis , alpha-Thalassemia/epidemiology , alpha-Thalassemia/genetics , beta-Thalassemia/diagnosis , beta-Thalassemia/epidemiology , beta-Thalassemia/genetics
3.
Hemoglobin ; 36(2): 144-50, 2012.
Article in English | MEDLINE | ID: mdl-22239406

ABSTRACT

Prenatal diagnosis of the hemoglobinopathies by fetal DNA analysis is currently performed in most countries, either by DNA sequencing, restriction enzyme polymerase chain reaction (RE-PCR) or the amplification refractory mutation system (ARMS). These methods are time consuming and prolong the turnaround time for diagnosis. We here describe a method utilizing pyrosequencing for the prenatal diagnosis of 12 common nondeletional α- and ß-globin gene mutations in the UK population. In particular, it replaced the diagnosis of sickle cell disease by RE-PCR and for the diagnosis of ß-thalassemia (ß-thal) by Sanger DNA sequencing. We have genotyped 148 chorionic villi and 29 uncultured amniotic fluid DNA samples by pyrosequencing and found 100% concordance with the fetal diagnosis result obtained by ARMS-PCR or DNA sequencing. Pyrosequencing was more robust, revealing an 83% decrease in diagnostic failures using uncultured amniocyte DNA samples, and also quantitative, revealing one case of allelic imbalance due to maternal DNA contamination. Overall, we found pyrosequencing to be simpler, more robust, quicker, and less expensive than conventional sequencing and RE-PCR, making it a good choice for rapid and cost-effective prenatal diagnosis of thalassemia and sickle cell disease.


Subject(s)
Hemoglobinopathies/diagnosis , Prenatal Diagnosis , Sequence Analysis, DNA/methods , alpha-Globins/genetics , beta-Globins/genetics , Amniotic Fluid/chemistry , Base Sequence , Chorionic Villi Sampling , Female , Genotype , Genotyping Techniques , Hemoglobinopathies/epidemiology , Hemoglobinopathies/genetics , Humans , Molecular Sequence Data , Pregnancy , United Kingdom/epidemiology
4.
Hum Mol Genet ; 17(19): 3084-93, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18632685

ABSTRACT

We have characterized a newly identified 16.6 kb deletion which removes a significant proportion of the human alpha-globin cluster including the psizeta1, alpha(D), psialpha1 and alpha2-globin genes but leaves the duplicated alpha1 gene intact. This complicated rearrangement results from a combination of slippage and strand switching at sites of microhomology during replication. Functional analysis shows that expression of the remaining alpha1 gene is increased, rather than down-regulated by this deletion. This could be related to its proximity to the remote upstream alpha-globin regulatory elements or reduced competition for these elements in the absence of the dominant alpha2-globin gene. The finding of a very mild phenotype associated with such an extensive deletion in the alpha-globin cluster implies that much of the DNA removed by the deletion is likely to be functionally unimportant. These findings suggest that other than the upstream regulatory elements and promoter proximal elements there are unlikely to be additional positive cis-acting sequences in the alpha-globin cluster.


Subject(s)
DNA Replication , Gene Deletion , Globins/genetics , Multigene Family , Adult , Cells, Cultured , Child , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Human, Pair 16/genetics , Female , Gene Expression , Globins/metabolism , Humans , Male , Phenotype , RNA Polymerase II/metabolism
5.
Hemoglobin ; 30(1): 57-62, 2006.
Article in English | MEDLINE | ID: mdl-16540417

ABSTRACT

We quantified Hb Bart's (gamma4) levels by high performance liquid chromatography (HPLC) in 103 fresh cord blood samples from Homerton Hospital, East London, UK. The alpha-globin gene arrangement was determined by Southern blot hybridization and genomic sequence analysis of the alpha-globin genes. The cord blood Hb Bart's levels ranged from 0.5 to 11.9% of total hemoglobin (Hb) and were arranged into three categories: i) levels below 1.5%; ii) levels between 1.5 and 5.7%; iii) levels above 6.1%. These corresponded to a normal alpha-globin genotype, a single deleted/inactivated alpha-globin gene and two deleted/inactivated alpha-globin genes, respectively. The study identified the 3.7 kb and 20.5 kb alpha-thalassemia (thal) deletions, three non deletional alpha-thal mutations and a novel alpha-globin gene rearrangement. Hb Bart's screening of fresh umbilical cord blood is an effective method to evaluate globin chain imbalance. This strategy could be utilized to screen populations for the incidence of alpha-thal and also to identify rare or new molecular lesions that reduce alpha-globin gene expression.


Subject(s)
Fetal Blood/chemistry , Hemoglobins, Abnormal/analysis , alpha-Thalassemia/diagnosis , alpha-Thalassemia/genetics , Chromatography, High Pressure Liquid/methods , Genotype , Humans , Infant, Newborn , alpha-Thalassemia/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...