Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 580(10): 2430-4, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16638567

ABSTRACT

Annexin A8 is a poorly characterized member of the annexin family of Ca2+-regulated membrane binding proteins. Initially only identified at the cDNA level it had been tentatively linked to acute promyelocytic leukaemia (APL) due to its high and regulated expression in APL-derived cells. Here we identify unique properties of the annexin A8 protein. We show that it binds Ca2+-dependently and with high specificity to phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2) and is also capable of interacting with F-actin. In line with these characteristics annexin A8 is recruited to F-actin-associated PtdIns(4,5)P2-rich membrane domains formed in HeLa cells upon infection with non-invading enteropathogenic Escherichia coli. These properties suggest a role of annexin A8 in the organization of certain actin-associated membrane domains.


Subject(s)
Actins/metabolism , Annexins/metabolism , Phospholipids/metabolism , Calcium/metabolism , Electrophoresis, Polyacrylamide Gel , HeLa Cells , Humans , Protein Binding
2.
J Cell Sci ; 117(Pt 16): 3473-80, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15226372

ABSTRACT

Annexin 2 is a Ca(2+)-regulated membrane protein and an F-actin-binding protein enriched at actin assembly sites both, on the plasma membrane and on endosomal vesicles. Here, we identify annexin 2 as a phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P(2))-interacting protein, thereby explaining this specific membrane association. Using the pleckstrin-homology (PH) domain of phospholipase Cdelta1 fused to yellow fluorescent protein as a marker for PtdIns(4,5)P(2), we show that annexin 2 and its ligand p11 (S100A10) are targeted to sites of PtdIns(4,5)P(2) enrichment where F-actin accumulates. At the plasma membrane, adhesion of pedestal-forming enteropathogenic Escherichia coli induces a recruitment of 1-phosphatidylinositol-4-phosphate 5-kinase (PtdIns4P 5-kinase) and an enrichment of PtdIns(4,5)P(2) and annexin 2-p11 at sites of bacterial adhesion. Induction of PtdIns(4,5)P(2)-enriched ruffles and PtdIns(4,5)P(2)-positive, actin-coated vacuoles by Arf6-mediated activation of PtdIns4P 5-kinase also leads to a concomitant accumulation of the annexin 2-p11 complex and the PH domain. Binding studies with immobilized phosphoinositides and phosphoinositide-containing liposomes reveal that the purified annexin 2-p11 complex directly and specifically binds to PtdIns(4,5)P(2) with an affinity comparable to that of the PH domain of phospholipase Cdelta1. Experiments using individual subunits identify annexin 2 as the PtdIns(4,5)P(2)-binding entity. Thus, the direct interaction of annexin 2 with PtdIns(4,5)P(2) is a means of specifically recruiting the annexin 2-p11 complex to sites of membrane-associated actin assembly.


Subject(s)
Actins/metabolism , Annexin A2/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/metabolism , Base Sequence , Cell Membrane/metabolism , DNA Primers , HeLa Cells , Humans , Microscopy, Fluorescence , Protein Binding
3.
FEBS Lett ; 546(2-3): 359-64, 2003 Jul 10.
Article in English | MEDLINE | ID: mdl-12832069

ABSTRACT

Annexin A9 is a novel member of the annexin family of Ca(2+) and phospholipid binding proteins which has so far only been identified in EST data bases and whose deduced protein sequence shows mutations in residues considered crucial for Ca(2+) coordination in other annexins. To elucidate whether the annexin A9 protein is expressed as such and to characterize its biochemical properties we probed cell extracts with specific anti-annexin A9 antibodies and developed a recombinant expression system. We show that the protein is found in HepG2 hepatoma cell lysates and that a green fluorescent protein-tagged form is abundantly expressed in the cytosol of HeLa cells. Recombinant expression in bacteria yields a soluble protein that can be enriched by conventional chromatographic procedures. The protein is capable of binding phosphatidylserine containing liposomes albeit only at Ca(2+) concentrations exceeding 2 mM. Moreover and in contrast to other annexins this binding appears to be irreversible as the liposome-bound annexin A9 cannot be released by Ca(2+) chelation. These results indicate that annexin A9 is a unique member of the annexin family whose intracellular activity is not subject to Ca(2+) regulation.


Subject(s)
Annexins/physiology , Calcium/metabolism , Lipid Metabolism , Annexins/genetics , Annexins/metabolism , Cloning, Molecular , DNA, Complementary , Green Fluorescent Proteins , HeLa Cells , Humans , Luminescent Proteins/metabolism , Protein Binding , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...