Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hepatol ; 50(1): 118-27, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19008009

ABSTRACT

BACKGROUND/AIMS: FGFR4, a member of the fibroblast growth factor receptor family, has been recently associated with progression of melanoma, breast and head and neck carcinoma. Given its uniquely high expression in the liver, we investigated its contributory role to hepatocellular carcinoma (HCC). METHODS: We performed a comprehensive sequencing of full-length FGFR4 transcript in 57 tumor/normal HCC tissue pairs, and quantified their mRNA expressions. Notable mutations and expression patterns were correlated with patient data. Clinically significant trends were examined in in vitro models. RESULTS: We found eight genetic alterations including two highly frequent polymorphisms (V10I and G338R). Secretion of alpha-fetoprotein (AFP), a HCC biomarker, was increased among patients bearing homozygous Arg388 alleles. One-third of these patients exhibited increased FGFR4 mRNA expression in the matched tumor/normal tissue. Subsequent in vitro perturbation of FGFR4 signaling through both FGF19-stimulation and FGFR4 silencing confirmed a mechanistic link between FGFR4 activities and tumor aggressiveness. More importantly, inhibition of FGFR activity with PD173074 exquisitely blocked HuH7 (high FGFR4 expression) proliferation as compared to control cell lines. CONCLUSIONS: FGFR4 contributes significantly to HCC progression by modulating AFP secretion, proliferation and anti-apoptosis. Its frequent overexpression in patients renders its inhibition a novel and much needed pharmacological approach against HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/physiology , Carcinoma, Hepatocellular/metabolism , Cell Proliferation , Liver Neoplasms/metabolism , Receptor, Fibroblast Growth Factor, Type 4/metabolism , alpha-Fetoproteins/metabolism , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Disease Progression , Fibroblast Growth Factors/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Polymorphism, Single Nucleotide/genetics , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptors, Fibroblast Growth Factor/antagonists & inhibitors
2.
Cancer Res ; 67(23): 11368-76, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-18056464

ABSTRACT

Protein tyrosine kinases (PTKs) play a critical role in the manifestation of cancer cell properties, and respective signaling mechanisms have been studied extensively on immortalized tumor cells. To characterize and analyze commonly used cancer cell lines with regard to variations in the primary structure of all expressed PTKs, we conducted a cDNA-based sequence analysis of the entire tyrosine kinase transcriptome of 254 established tumor cell lines. The profiles of cell line intrinsic PTK transcript alterations and the evaluation of 155 identified polymorphisms and 234 somatic mutations are made available in a database designated "Tykiva" (tyrosine kinome variant). Tissue distribution analysis and/or the localization within defined protein domains indicate functional relevance of several genetic alterations. The cysteine replacement of the highly conserved Y367 residue in fibroblast growth factor receptor 4 or the Q26X nonsense mutation in the tumor-suppressor kinase CSK are examples, and may contribute to cell line-specific signaling characteristics and tumor progression. Moreover, known variants, such as epidermal growth factor receptor G719S, that were shown to mediate anticancer drug sensitivity could be detected in other than the previously reported tumor types. Our data therefore provide extensive system information for the design and interpretation of cell line-based cancer research, and may stimulate further investigations into broader clinical applications of current cancer therapeutics.


Subject(s)
Gene Expression Profiling , Mutation/genetics , Neoplasms/genetics , Protein-Tyrosine Kinases/genetics , Cell Line , Cells, Cultured , DNA, Complementary/analysis , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasms/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction
3.
Cell Signal ; 18(9): 1515-27, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16478662

ABSTRACT

Proteolytic processing and ectodomain shedding have been described for a broad spectrum of transmembrane proteins under both normal and pathophysiological conditions and has been suggested as one mechanism to regulate a protein's function. It has also been documented for the receptor-like protein tyrosine phosphatase PTP-LAR, induced by treating cells with the tumor promoter TPA or the calcium ionophor A23187. Here we identified the epidermal growth factor receptor (EGFR) as both an association partner of PTP-LAR, that mediates phosphorylation of the latter, as well as an inducer of LAR-cleavage. Both overexpression of this kinase and stimulation of endogenous EGFR in various tumor cell lines were shown to induce proteolytic processing of the catalytic LAR-P-subunit. In contrast to TPA-induced shedding of PTP-LAR, EGFR-mediated cleavage did not require PKC-activity. For both stimuli, however, processing of the P-subunit turned out to be dependent on the activation of the MAP kinases ERK1 and ERK2, and was completely abrogated upon pre-treating cells with Batimastat, indicating the involvement of a metalloproteinase in this pathway. Being strongly impaired in fibroblasts derived from ADAM-17/TACE-knockout-mice or tumor cells that express a dominant negative mutant of ADAM-17/TACE, cleavage of PTP-LAR is suggested to be mediated by this metalloproteinase. Paralleled by rapid reduction of cell surface-localized LAR-E-subunit, EGFR-induced cleavage could be shown to lead to degradation of the catalytic LAR-P-subunit, thereby resulting in a significantly reduced overall cellular phosphatase activity of PTP-LAR. These results for the first time identify a protein tyrosine phosphatase as a potential substrate of TACE and describe proteolytic processing of PTP-LAR as a means of regulating phosphatase activity downstream and thus under the control of EGFR-mediated signaling pathways.


Subject(s)
ADAM Proteins/metabolism , ErbB Receptors/metabolism , Isoenzymes/metabolism , Nerve Tissue Proteins/metabolism , Protein Processing, Post-Translational , Protein Tyrosine Phosphatases/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction/physiology , ADAM17 Protein , Animals , Cell Line, Tumor , Down-Regulation , ErbB Receptors/chemistry , ErbB Receptors/genetics , Humans , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Protein Structure, Tertiary , Protein Subunits/genetics , Protein Subunits/metabolism , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...