Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 181(2): 293-305.e11, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32142653

ABSTRACT

Pulmonary tuberculosis, a disease caused by Mycobacterium tuberculosis (Mtb), manifests with a persistent cough as both a primary symptom and mechanism of transmission. The cough reflex can be triggered by nociceptive neurons innervating the lungs, and some bacteria produce neuron-targeting molecules. However, how pulmonary Mtb infection causes cough remains undefined, and whether Mtb produces a neuron-activating, cough-inducing molecule is unknown. Here, we show that an Mtb organic extract activates nociceptive neurons in vitro and identify the Mtb glycolipid sulfolipid-1 (SL-1) as the nociceptive molecule. Mtb organic extracts from mutants lacking SL-1 synthesis cannot activate neurons in vitro or induce cough in a guinea pig model. Finally, Mtb-infected guinea pigs cough in a manner dependent on SL-1 synthesis. Thus, we demonstrate a heretofore unknown molecular mechanism for cough induction by a virulent human pathogen via its production of a complex lipid.


Subject(s)
Cough/physiopathology , Glycolipids/metabolism , Nociceptors/physiology , Virulence Factors/metabolism , Adult , Animals , Cell Line , Cough/etiology , Cough/microbiology , Female , Glycolipids/physiology , Guinea Pigs , Host-Pathogen Interactions , Humans , Lipids/physiology , Lung/microbiology , Macrophages/microbiology , Male , Mice , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Primary Cell Culture , Tuberculosis/microbiology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/physiopathology , Virulence Factors/physiology
2.
Elife ; 92020 03 05.
Article in English | MEDLINE | ID: mdl-32134383

ABSTRACT

Mycobacterium tuberculosis (Mtb) can enter the body through multiple routes, including via specialized transcytotic cells called microfold cells (M cell). However, the mechanistic basis for M cell entry remains undefined. Here, we show that M cell transcytosis depends on the Mtb Type VII secretion machine and its major virulence factor EsxA. We identify scavenger receptor B1 (SR-B1) as an EsxA receptor on airway M cells. SR-B1 is required for Mtb binding to and translocation across M cells in mouse and human tissue. Together, our data demonstrate a previously undescribed role for Mtb EsxA in mucosal invasion and identify SR-B1 as the airway M cell receptor for Mtb.


Subject(s)
Mycobacterium tuberculosis/physiology , Scavenger Receptors, Class B/physiology , Adenoids/cytology , Adenoids/microbiology , Animals , Cell Line, Tumor , Gene Expression Regulation , Humans , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/classification , Nose , Type VII Secretion Systems/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...