Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 111(5): 979-989, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38604166

ABSTRACT

Genotype imputation is now fundamental for genome-wide association studies but lacks fairness due to the underrepresentation of references from non-European ancestries. The state-of-the-art imputation reference panel released by the Trans-Omics for Precision Medicine (TOPMed) initiative improved the imputation of admixed African-ancestry and Hispanic/Latino samples, but imputation for populations primarily residing outside of North America may still fall short in performance due to persisting underrepresentation. To illustrate this point, we imputed the genotypes of over 43,000 individuals across 123 populations around the world and identified numerous populations where imputation accuracy paled in comparison to that of European-ancestry populations. For instance, the mean imputation r-squared (Rsq) for variants with minor allele frequencies between 1% and 5% in Saudi Arabians (n = 1,061), Vietnamese (n = 1,264), Thai (n = 2,435), and Papua New Guineans (n = 776) were 0.79, 0.78, 0.76, and 0.62, respectively, compared to 0.90-0.93 for comparable European populations matched in sample size and SNP array content. Outside of Africa and Latin America, Rsq appeared to decrease as genetic distances to European-ancestry reference increased, as predicted. Using sequencing data as ground truth, we also showed that Rsq may over-estimate imputation accuracy for non-European populations more than European populations, suggesting further disparity in accuracy between populations. Using 1,496 sequenced individuals from Taiwan Biobank as a second reference panel to TOPMed, we also assessed a strategy to improve imputation for non-European populations with meta-imputation, but this design did not improve accuracy across frequency spectra. Taken together, our analyses suggest that we must ultimately strive to increase diversity and size to promote equity within genetics research.


Subject(s)
Gene Frequency , Genetics, Population , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Genome, Human , Genotype , White People/genetics , European People , Hispanic or Latino , African People , Black People
2.
Am J Hum Genet ; 110(11): 1853-1862, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37875120

ABSTRACT

The heritability explained by local ancestry markers in an admixed population (hγ2) provides crucial insight into the genetic architecture of a complex disease or trait. Estimation of hγ2 can be susceptible to biases due to population structure in ancestral populations. Here, we present heritability estimation from admixture mapping summary statistics (HAMSTA), an approach that uses summary statistics from admixture mapping to infer heritability explained by local ancestry while adjusting for biases due to ancestral stratification. Through extensive simulations, we demonstrate that HAMSTA hγ2 estimates are approximately unbiased and are robust to ancestral stratification compared to existing approaches. In the presence of ancestral stratification, we show a HAMSTA-derived sampling scheme provides a calibrated family-wise error rate (FWER) of ∼5% for admixture mapping, unlike existing FWER estimation approaches. We apply HAMSTA to 20 quantitative phenotypes of up to 15,988 self-reported African American individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study. We observe hˆγ2 in the 20 phenotypes range from 0.0025 to 0.033 (mean hˆγ2 = 0.012 ± 9.2 × 10-4), which translates to hˆ2 ranging from 0.062 to 0.85 (mean hˆ2 = 0.30 ± 0.023). Across these phenotypes we find little evidence of inflation due to ancestral population stratification in current admixture mapping studies (mean inflation factor of 0.99 ± 0.001). Overall, HAMSTA provides a fast and powerful approach to estimate genome-wide heritability and evaluate biases in test statistics of admixture mapping studies.


Subject(s)
Black or African American , Genetics, Population , Humans , Chromosome Mapping , Phenotype , Polymorphism, Single Nucleotide/genetics
3.
bioRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37292811

ABSTRACT

Genotype imputation is now fundamental for genome-wide association studies but lacks fairness due to the underrepresentation of populations with non-European ancestries. The state-of-the-art imputation reference panel released by the Trans-Omics for Precision Medicine (TOPMed) initiative contains a substantial number of admixed African-ancestry and Hispanic/Latino samples to impute these populations with nearly the same accuracy as European-ancestry cohorts. However, imputation for populations primarily residing outside of North America may still fall short in performance due to persisting underrepresentation. To illustrate this point, we curated genome-wide array data from 23 publications published between 2008 to 2021. In total, we imputed over 43k individuals across 123 populations around the world. We identified a number of populations where imputation accuracy paled in comparison to that of European-ancestry populations. For instance, the mean imputation r-squared (Rsq) for 1-5% alleles in Saudi Arabians (N=1061), Vietnamese (N=1264), Thai (N=2435), and Papua New Guineans (N=776) were 0.79, 0.78, 0.76, and 0.62, respectively. In contrast, the mean Rsq ranged from 0.90 to 0.93 for comparable European populations matched in sample size and SNP content. Outside of Africa and Latin America, Rsq appeared to decrease as genetic distances to European reference increased, as predicted. Further analysis using sequencing data as ground truth suggested that imputation software may over-estimate imputation accuracy for non-European populations than European populations, suggesting further disparity between populations. Using 1496 whole genome sequenced individuals from Taiwan Biobank as a reference, we also assessed a strategy to improve imputation for non-European populations with meta-imputation, which can combine results from TOPMed with smaller population-specific reference panels. We found that meta-imputation in this design did not improve Rsq genome-wide. Taken together, our analysis suggests that with the current size of alternative reference panels, meta-imputation alone cannot improve imputation efficacy for underrepresented cohorts and we must ultimately strive to increase diversity and size to promote equity within genetics research.

4.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131817

ABSTRACT

The heritability explained by local ancestry markers in an admixed population hγ2 provides crucial insight into the genetic architecture of a complex disease or trait. Estimation of hγ2 can be susceptible to biases due to population structure in ancestral populations. Here, we present a novel approach, Heritability estimation from Admixture Mapping Summary STAtistics (HAMSTA), which uses summary statistics from admixture mapping to infer heritability explained by local ancestry while adjusting for biases due to ancestral stratification. Through extensive simulations, we demonstrate that HAMSTA hγ2 estimates are approximately unbiased and are robust to ancestral stratification compared to existing approaches. In the presence of ancestral stratification, we show a HAMSTA-derived sampling scheme provides a calibrated family-wise error rate (FWER) of ~5% for admixture mapping, unlike existing FWER estimation approaches. We apply HAMSTA to 20 quantitative phenotypes of up to 15,988 self-reported African American individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study. We observe hˆγ2 in the 20 phenotypes range from 0.0025 to 0.033 (mean hˆγ2=0.012+/-9.2×10-4), which translates to hˆ2 ranging from 0.062 to 0.85 (mean hˆ2=0.30+/-0.023). Across these phenotypes we find little evidence of inflation due to ancestral population stratification in current admixture mapping studies (mean inflation factor of 0.99 +/- 0.001). Overall, HAMSTA provides a fast and powerful approach to estimate genome-wide heritability and evaluate biases in test statistics of admixture mapping studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...