Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 35(29)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38593759

ABSTRACT

Herein, we employ molecular dynamics simulations to decode the friction properties and phonon energy dissipation between black phosphorus layers. The observations reveal the influence of three factors, temperature, velocity, and normal load, on the friction force of monolayer/bilayer black phosphorus. Specifically, friction is negatively correlated with layer thickness and temperature, and positively correlated with velocity and normal load. The change in friction force is further explained in terms of frictional energy dissipation, and supplemented by the height of potential barriers as well as the number of excited phonons. From the phonon spectrum analysis, the phonon number at the contact interface is found to be higher than that at the non-contact interface. This is due to the larger distance of the contact interface atoms deviate from their equilibrium positions, resulting in higher total energy generated by more intense oscillations, and therefore contributes greater to friction.

2.
J Phys Condens Matter ; 36(19)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38295435

ABSTRACT

To solve the problem of adhesion of aluminum fluid to the inner wall of the vacuum ladle in the aluminum electrolysis industry, molecular dynamics simulation is performed to research the wetting behavior of Al droplets on the surfaces of theα-Al2O3substrates C (0001), M (11-00), and R (11-02) at 1073 K. Meanwhile, the adhesion characteristics of the Al droplet are evaluated by the potential of the mean force (PMF) for the separation of the Al droplets from different surfaces of theα-Al2O3substrate. The results show that the wetting behavior of Al droplets on theα-Al2O3substrate is influenced by the different crystallographic orientations. The diffusion of Al droplets in thex-o-yplane of the substrate exhibits isotropic. The PMF and the interfacial potential energy reveal that the magnitude of the adhesion work in the solid-liquid separation of Al droplets fromα-Al2O3substrates follows the order C (0001) > R (11-02) > M (11-00). These findings characterize the wetting properties and adhesion behavior of Al droplets on an atomic scale and provide a theoretical basis for the selection of materials for the inner wall of the vacuum ladle.

3.
Langmuir ; 39(39): 13986-13999, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37725795

ABSTRACT

To solve the adhesion problem between molten aluminum and vacuum ladle liner during the electrolytic aluminum production process, the wetting state and adhesion properties of molten aluminum droplets on substrate surfaces with different nanopillars are investigated based on molecular dynamics. The results show that the adhesion strength of molten aluminum droplets in different wetting states has the pattern Young state > Wenzel state > Cassie state. Effects of increasing nanopillar height or interval are poles apart in the wetting state and adhesion characteristics of aluminum molten droplets. The critical height and critical interval of the nanopillar where the wetting state transition occurs are obtained. The increase of the nanopillar width can induce the wetting state transition from the Cassie state to the Wenzel state. In addition, the phantom wall method is applied to study the variation of the separation force. It is found that a peak in the separation force curve occurs when the molten droplet separates from the bottom of the nanopillar interval or the top of the nanopillar. The separation force curves of the droplets in the Young state and the Cassie state have single peaks, while the droplets in the Wenzel state have double peaks.

4.
Nanoscale ; 15(34): 14122-14130, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37581537

ABSTRACT

Based on a combination of molecular dynamics simulations and quantum theories, this study discloses the phonon mechanism of angle-dependent superlubricity between black phosphorus layers. Friction exhibits 180° periodicity, i.e., the highest friction at 0° and 180° and lowest at 90°. Thermal excitation reduces friction at 0° due to thermal lubrication. However, at 90°, high temperature increases friction caused by thermal collision owing to lower interfacial constraints. Phonon spectra reveal that with 0°, energy dissipation channels can be formed at the interface, thus enhancing dissipation efficiency, while the energy dissipation channels are destroyed, thus hindering frictional dissipation at 90°. Besides, for both commensurate and incommensurate cases, more phonons are excited on atoms adjacent to the contact interface than those excited from nonadjacent interface atoms.

5.
Nanotechnology ; 34(21)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36821852

ABSTRACT

Although the friction characteristics under different contact conditions have been extensively studied, the mechanism of phonon transport at the structural lubrication interface is not extremely clear. In this paper, we firstly promulgate that there is a 90°-symmetry of friction force depending on rotation angle at Si/Si interface, which is independent of normal load and temperature. It is further found that the interfacial temperature difference under incommensurate contacts is much larger than that in commensurate cases, which can be attributed to the larger interfacial thermal resistance (ITR). The lower ITR brings greater energy dissipation in commensurate sliding, and the reason for that is more effective energy dissipation channels between the friction surfaces, making it easier for the excited phonons at the washboard frequency and its harmonics to transfer through the interface. Nevertheless, the vibrational frequencies of the interfacial atoms between the tip and substrate during the friction process do not match in incommensurate cases, and there is no effective energy transfer channel, thus presenting the higher ITR and lower friction. Eventually, the number of excited phonons on contact surfaces reveals the amount of frictional energy dissipation in different contact states.

6.
J Phys Condens Matter ; 35(16)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36787638

ABSTRACT

The adhesion problem of the liquid aluminum (Al) and solid surfaces in the production process has not been completely solved. In this paper, by performing the molecular dynamic simulations, we first establish models composed of liquid-Al/Al and liquid-Al/silicon (Si) systems, in which the region of solid temperature is from 100 K to 800 K. Then, the dependence between the adhesion force and the solid temperature is qualitatively investigated. The adhesion mechanism of liquid atoms is explored in terms of their diffusion behavior. The results show that there is an opposite effect of the temperature on adhesion properties between the liquid-Al/Al interface and the liquid-Al/Si interface. The thermal excitation effect induces enlargement of the probability of atomic collisions, which accounts for the increase of the adhesion force at the liquid-Al/Al interface. Conversely, the thermal excitation effect leads to the detachment of the atoms in contact with each other, which reduces the adhesion force at the liquid-Al/Si interface. Our findings reveal that the solid Al surface is aluminophilic but the solid Si surface is aluminophobic. In addition, the adhesion between liquid-Al and solid surfaces can be explained by the variation of the interfacial potential.

7.
Nanotechnology ; 33(23)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35180710

ABSTRACT

Controlling friction force and thermal conductance at solid/solid interface is of great importance but remains a significant challenge. In this work, we propose a method to control the matching degree of phonon spectra at the interface through modifying the atomic mass of contact materials, thereby regulating the interfacial friction force and thermal conductance. Results of Debye theory and molecular dynamics simulations show that the cutoff frequency of phonon spectrum decreases with increasing atomic mass. Thus, two contact surfaces with equal atomic mass have same vibrational characteristics, so that more phonons could pass through the interface. In these regards, the coupling strength of phonon modes on contact surfaces makes it possible to gain insight into the nonmonotonic variation of interfacial friction force and thermal conductance. Our investigations suggest that the overlap of phonon modes increases energy scattering channels and therefore phonon transmission at the interface, and finally, an enhanced energy dissipation in friction and heat transfer ability at interface.

8.
Nanotechnology ; 33(36)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-34844233

ABSTRACT

Metal nanomaterials exhibit excellent mechanical properties compared with corresponding bulk materials and have potential applications in various areas. Despite a number of studies of the size effect on Cu nanowires mechanical properties with square cross-sectional, investigations of them in rectangular cross-sectional with various sizes at constant volume are rare, and lack of multifactor coupling effect on mechanical properties and quantitative investigation. In this work, the dependence of mechanical properties and deformation mechanisms of Cu nanowires/nanoplates under tension on cross-sessional area, aspect ratio of cross-sectional coupled with orientation were investigated using molecular dynamics simulations and the semi-empirical expressions related to mechanical properties were proposed. The simulation results show that the Young's modulus and the yield stress sharply increase with the aspect ratio except for the 〈110〉{110}{001} Cu nanowires/nanoplates at the same cross-sectional area. And the Young's modulus increases while the yield stress decreases with the cross-sectional area of Cu nanowires. However, both of them increase with the cross-sectional area of Cu nanoplates. Besides, the Young's modulus increases with the cross-sectional area at all the orientations. The yield stress shows a mildly downward trend except for the 〈111〉 Cu nanowires with increased cross-sectional area. For the Cu nanowires with a small cross-sectional area, the surface force increases with the aspect ratio. In contrast, it decreases with the aspect ratio increase at a large cross-sectional area. At the cross-sectional area of 13.068 nm2, the surface force decreases with the aspect ratio of the 〈110〉 Cu nanowires while it increases at other orientations. The surface force is a linearly decreasing function of the cross-sectional area at different orientations. Quantitative studies show that Young's modulus and yield stress to the aspect ratio of the Cu nanowires satisfy exponent relationship. In addition, the main deformation mechanism of Cu nanowires is the nucleation and propagation of partial dislocations while it is the twinning-dominated reorientation for Cu nanoplates.

9.
Materials (Basel) ; 12(5)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30845712

ABSTRACT

The periodicity and density of atomic arrangement vary with the crystal orientation, which results in different deformation mechanisms and mechanical properties of γ-TiAl. In this paper, the anisotropic characteristics for γ-TiAl with (100), ( 1 ¯ 10 ) and (111) surfaces during nanoindentation at 300 K have been investigated by molecular dynamics simulations. It is found that there is no obvious pop-in event in all load-depth curves when the initial plastic deformation of γ-TiAl samples occurs, because the dislocation nucleates before the first load-drop; while a peak appears in both the unloading curves of the ( 1 ¯ 10 ) and (111) samples due to the release of energy. Stacking faults, twin boundaries and vacancies are formed in all samples; however, interstitials are formed in the (100) sample, a stacking fault tetrahedron is formed in the (111) sample; and two prismatic dislocation loops with different activities are formed in the ( 1 ¯ 10 ) and (111) samples, respectively. It is also concluded that the values of the critical load, strain energy, hardness and elastic modulus for the (111) sample are the maximum, and for the (100) sample are the minimum. Furthermore, the orientation dependence of the elastic modulus is greater than the hardness and critical load.

10.
Materials (Basel) ; 12(1)2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30621116

ABSTRACT

Cold deformation behavior of polycrystalline metallic material is affected by intrinsic defects such as dislocations, voids, inclusions etc. Existing studies on α 2 ( Ti 3 Al ) + γ ( TiAl ) two-phase Ti⁻Al alloy cover about deformation behavior mainly on macro scale. This paper focuses on the cold deformation mechanism of two-phase Ti⁻Al alloy at micro scale, and the role of voids in deformation process. Molecular dynamics simulations were performed to study the evolution of micro structure of material under uniaxial tension. Interaction between spherical nano voids with different size and position was also examined in the simulation. The results show that (1) In elastic stage, deformation of the two-phase is coordinated, but Ti 3 Al is more deformable; (2) In plastic stage, γ phase is the major dislocation source in two-phase alloy; (3) voids detracts the strength of the two-phase alloy, while the position of void affect the degree of this subtraction, voids located at the boundary of α 2 / γ phase have significant detraction to strength.

SELECTION OF CITATIONS
SEARCH DETAIL
...