Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 20(11): 4718-4737, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38772396

ABSTRACT

The time-dependent Hartree-Fock (TDHF) vertex of many-body perturbation theory (MBPT) makes it possible to extend TDHF theory to charged excitations. Here we assess its performance by applying it to spherical atoms in their neutral electronic configuration. On a theoretical level, we recast the TDHF vertex as a reducible vertex, highlighting the emergence of a self-energy expansion purely in orders of the bare Coulomb interaction; then, on a numerical level, we present results for polarizabilities, ionization energies (IEs), and photoemission satellites. We confirm the superiority of THDF over simpler methods such as the random phase approximation for the prediction of atomic polarizabilities. We then find that the TDHF vertex reliably provides better IEs than GW and low-order self-energies do in the light-atom, few-electron regime; its performance degrades in heavier, many-electron atoms instead, where an expansion in orders of an unscreened Coulomb interaction becomes less justified. New relevant features are introduced in the satellite spectrum by the TDHF vertex, but the experimental spectra are not fully reproduced due to a missing account of nonlinear effects connected to hole relaxation. We also explore various truncations of the self-energy given by the TDHF vertex, but do not find them to be more convenient than low-order approximations such as GW and second Born (2B), suggesting that vertex corrections should be carried out consistently both in the self-energy and in the polarizability.

2.
Nanotechnology ; 34(43)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37285820

ABSTRACT

Conventional techniques of measuring thermal transport properties may be unreliable or unwieldy when applied to nanostructures. However, a simple, all-electrical technique is available for all samples featuring high-aspect-ratio: the 3ωmethod. Nonetheless, its usual formulation relies on simple analytical results which may break down in real experimental conditions. In this work we clarify these limits and quantify them via adimensional numbers and present a more accurate, numerical solution to the 3ωproblem based on the Finite Element Method (FEM). Finally, we present a comparison of the two methods on experimental datasets from InAsSb nanostructures with different thermal transport properties, to stress the crucial need of a FEM counterpart to 3ωmeasurements in nanostructures with low thermal conductivity.

3.
Phys Chem Chem Phys ; 23(16): 10059-10069, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33870971

ABSTRACT

Applications of low-cost non-perturbative approaches in real time, such as time-dependent density functional theory, for the study of nonlinear optical properties of large and complex systems are gaining increasing popularity. However, their assessment still requires the analysis and understanding of elementary dynamical processes in simple model systems. Motivated by the aim of simulating optical nonlinearities in molecules, here exemplified by the case of the quaterthiophene oligomer, we investigate light absorption in many-electron interacting systems beyond the linear regime by using a single broadband impulse of an electric field; i.e. an electrical impulse in the instantaneous limit. We determine non-pertubatively the absorption cross section from the Fourier transform of the time-dependent induced dipole moment, which can be obtained from the time evolution of the wavefunction. We discuss the dependence of the resulting cross section on the magnitude of the impulse and we highlight the advantages of this method in comparison with perturbation theory by working on a one-dimensional model system for which numerically exact solutions are accessible. Thus, we demonstrate that the considered non-pertubative approach provides us with an effective tool for investigating fluence-dependent nonlinear optical excitations.

4.
Nanoscale ; 12(38): 19681-19688, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-32996531

ABSTRACT

Bottom-up approaches exploiting on-surface synthesis reactions allow atomic-scale precision in the fabrication of graphene nanoribbons (GNRs); this is essential for their technological applications since their unique electronic and optical properties are largely controlled by the specific edge structure. By means of a combined experimental-theoretical investigation of some prototype GNRs, we show here that high-resolution electron energy-loss spectroscopy (HREELS) can be successfully employed to fingerprint the details of the GNR edge structure. In particular, we demonstrate how the features of HREEL vibrational spectra - mainly dictated by edge CH out-of-plane modes - are unambiguously related to the GNR edge structure. Moreover, we single out those modes which are localized at the GNR termini and show how their relative intensity can be related to the average GNR length.

5.
J Am Chem Soc ; 140(25): 7803-7809, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29779378

ABSTRACT

Among organic electronic materials, graphene nanoribbons (GNRs) offer extraordinary versatility as next-generation semiconducting materials for nanoelectronics and optoelectronics due to their tunable properties, including charge-carrier mobility, optical absorption, and electronic bandgap, which are uniquely defined by their chemical structures. Although planar GNRs have been predominantly considered until now, nonplanarity can be an additional parameter to modulate their properties without changing the aromatic core. Herein, we report theoretical and experimental studies on two GNR structures with "cove"-type edges, having an identical aromatic core but with alkyl side chains at different peripheral positions. The theoretical results indicate that installment of alkyl chains at the innermost positions of the "cove"-type edges can "bend" the peripheral rings of the GNR through steric repulsion between aromatic protons and the introduced alkyl chains. This structural distortion is theoretically predicted to reduce the bandgap by up to 0.27 eV, which is corroborated by experimental comparison of thus synthesized planar and nonplanar GNRs through UV-vis-near-infrared absorption and photoluminescence excitation spectroscopy. Our results extend the possibility of engineering GNR properties, adding subtle structural distortion as a distinct and potentially highly versatile parameter.

6.
Phys Chem Chem Phys ; 20(7): 5021-5027, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29388641

ABSTRACT

Poly(3,4-ethylenedioxythiophene) (PEDOT) semiconductor plays a relevant role in the development of organic thermoelectric (TE) devices for low-power generation. While dopant counterions are usually needed to provide electrical conductivity, their overall effects on the thermoelectric response of the systems are unknown and uncontrolled. Here, we present a first principles study of the electronic and thermal transport of PEDOT crystalline assemblies, specifically analysing the role played by tosylate dopants on the thermoelectric figure of merit of the doped system. Our results demonstrate that, beside the desired charging effect, the presence of dopants impacts the bulk configuration by inflating the packing structure and worsening the intrinsic transport properties of the PEDOT host. This provides a rationale for the necessity of controlling the optimal amount and the structural incorporation of dopant in order to maximize the thermoelectric response of organic materials.

7.
Sci Rep ; 7(1): 16805, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196653

ABSTRACT

We revise the electronic and optical properties of ZnS on the basis of first principles simulations, in view of novel routes for optoelectronic and photonic devices, such as transparent conductors and plasmonic applications. In particular, we consider doping effects, as induced by Al and Cu. It is shown that doping ZnS with Al imparts a n-character and allows for a plasmonic activity in the mid-IR that can be exploited for IR metamaterials, while Cu doping induces a spin dependent p-type character to the ZnS host, opening the way to the engineering of transparent p-n junctions, p-type transparent conductive materials and spintronic applications. The possibility of promoting the wurtzite lattice, presenting a different symmetry with respect to the most stable and common zincblende structure, is explored. Homo- and heterojunctions to twin ZnO are discussed as a possible route to transparent metamaterial devices for communications and energy.

8.
Nanoscale ; 9(46): 18326-18333, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29143040

ABSTRACT

The bottom-up fabrication of graphene nanoribbons (GNRs) has opened new opportunities to specifically tune their electronic and optical properties by precisely controlling their atomic structure. Here, we address excitation in GNRs with periodic structural wiggles, the so-called chevron GNRs. Based on reflectance difference and high-resolution electron energy loss spectroscopies together with ab initio simulations, we demonstrate that their excited-state properties are of excitonic nature. The spectral fingerprints corresponding to different reaction stages in their bottom-up fabrication are also unequivocally identified, allowing us to follow the exciton build-up from the starting monomer precursor to the final GNR structure.

9.
Nano Lett ; 16(6): 3442-7, 2016 06 08.
Article in English | MEDLINE | ID: mdl-26907096

ABSTRACT

Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm(-1) is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp(2) carbon nanostructures.

10.
J Phys Chem A ; 118(33): 6507-13, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24984100

ABSTRACT

The electronic and optical properties of polycyclic aromatic hydrocarbons (PAHs) present a strong dependence on their size and geometry. We tackle this issue by analyzing the spectral features of two prototypical classes of PAHs, belonging to D6h and D2h symmetry point groups and related to coronene as multifunctional seed. While the size variation induces an overall red shift of the spectra and a redistribution of the oscillator strength between the main peaks, a lower molecular symmetry is responsible for the appearance of new optical features. Along with broken molecular orbital degeneracies, optical peaks split and dark states are activated in the low-energy part of the spectrum. Supported by a systematic analysis of the composition and the character of the optical transitions, our results contribute in shedding light to the mechanisms responsible for spectral modifications in the visible and near UV absorption bands of medium-size PAHs.


Subject(s)
Polycyclic Aromatic Hydrocarbons/chemistry , Anisotropy , Particle Size , Spectrophotometry, Ultraviolet , Surface Properties
11.
Nat Commun ; 5: 4253, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25001405

ABSTRACT

Narrow graphene nanoribbons exhibit substantial electronic bandgaps and optical properties fundamentally different from those of graphene. Unlike graphene--which shows a wavelength-independent absorbance for visible light--the electronic bandgap, and therefore the optical response, of graphene nanoribbons changes with ribbon width. Here we report on the optical properties of armchair graphene nanoribbons of width N=7 grown on metal surfaces. Reflectance difference spectroscopy in combination with ab initio calculations show that ultranarrow graphene nanoribbons have fully anisotropic optical properties dominated by excitonic effects that sensitively depend on the exact atomic structure. For N=7 armchair graphene nanoribbons, the optical response is dominated by absorption features at 2.1, 2.3 and 4.2 eV, in excellent agreement with ab initio calculations, which also reveal an absorbance of more than twice the one of graphene for linearly polarized light in the visible range of wavelengths.

12.
Phys Rev Lett ; 112(19): 198303, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24877971

ABSTRACT

We present a fully ab initio, nonperturbative description of the optical limiting properties of a metal-free phthalocyanine by simulating the effects of a broadband electric field of increasing intensity. The results confirm reverse saturable absorption as the leading mechanism for optical limiting phenomena in this system and reveal that a number of dipole-forbidden excitations are populated by excited-state absorption at more intense external fields. The excellent agreement with the experimental data supports our approach as a powerful tool to predict optical limiting in view of applications.


Subject(s)
Indoles/chemistry , Models, Chemical , Isoindoles , Models, Molecular , Optical Phenomena , Optics and Photonics/methods , Quantum Theory
13.
J Phys Chem Lett ; 3(7): 924-9, 2012 Apr 05.
Article in English | MEDLINE | ID: mdl-26286422

ABSTRACT

The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semiempirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries.

14.
J Am Chem Soc ; 133(15): 5893-9, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21443210

ABSTRACT

Molecular sensitization of the single-crystal ZnO (1010) surface through absorption of the catechol chromophore is investigated by means of density functional approaches. The resulting type II staggered interface is recovered in agreement with experiments, and its origin is traced back to the presence of molecular-related states in the gap of metal-oxide electronic structure. A systematic analysis carried out for further catecholate adsorbates allows us to identify the basic mechanisms that dictate the energy position of the gap states. The peculiar level alignment is demonstrated to be originated from the simultaneous interplay among the specific anchoring group, the backbone conjugation, and the lateral functional groups. The picture derived from our results provides efficient strategies for tuning the lineup between molecular and oxide states in hybrid interfaces with potential impact for ZnO-based optoelectronic applications.

15.
J Phys Chem Lett ; 2(11): 1315-9, 2011 Jun 02.
Article in English | MEDLINE | ID: mdl-26295427

ABSTRACT

We investigate the optical properties of edge-functionalized graphene nanosystems, focusing on the formation of junctions and charge-transfer excitons. We consider a class of graphene structures that combine the main electronic features of graphene with the wide tunability of large polycyclic aromatic hydrocarbons. By investigating prototypical ribbon-like systems, we show that, upon convenient choice of functional groups, low-energy excitations with remarkable charge-transfer character and large oscillator strength are obtained. These properties can be further modulated through an appropriate width variation, thus spanning a wide range in the low-energy region of the UV-vis spectra. Our results are relevant in view of designing all-graphene optoelectronic nanodevices, which take advantage of the versatility of molecular functionalization, together with the stability and the electronic properties of graphene nanostructures.

16.
J Chem Phys ; 132(11): 114304, 2010 Mar 21.
Article in English | MEDLINE | ID: mdl-20331294

ABSTRACT

We investigated the hydration properties of the cyanin dye molecule in the ionic flavylium configuration, through massive classical (force field) and ab initio (Car-Parrinello) molecular dynamics simulations at room temperature. Classical and quantum mechanical results coherently describe the structure of the first solvation shell. We discuss the hydrophobicity/hydrophilicity of the molecule in terms of attractive lateral hydroxyl-water and repulsive carbon pi-water interactions. The analysis of the electronic structure shows a net polarization and a molecular orbital redistribution induced by the polar solvent on the intrinsic (gas phase) properties of the dye. Changing the properties of the molecule, the hydration effects should be carefully taken into account in the further interactions of cyanin with the external environment.


Subject(s)
Carbocyanines/chemistry , Coloring Agents/chemistry , Water/chemistry , Flavonoids/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Quantum Theory , Temperature , Wettability
17.
Nanotechnology ; 19(28): 285201, 2008 Jul 16.
Article in English | MEDLINE | ID: mdl-21828725

ABSTRACT

We investigate from first principles the electronic and transport properties of hybrid organic/silicon interfaces of relevance to molecular electronics. We focus on conjugated molecules bonded to hydrogenated Si through hydroxyl or thiol groups. The electronic structure of the systems is addressed within density functional theory, and the electron transport across the interface is directly evaluated within the Landauer approach. The microscopic effects of molecule-substrate bonding on the transport efficiency are explicitly analyzed, and the oxygen-bonded interface is identified as a candidate system when preferential hole transfer is needed.

18.
Phys Rev Lett ; 99(4): 046802, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17678387

ABSTRACT

By combining experimental and theoretical approaches, we study the adsorption of pentacene on copper as a model for the coupling between aromatic molecules and metal surfaces. Our results for the interface electronic structure are not compatible with a purely physisorption picture, which is conventionally employed for such systems. Nay, we demonstrate electronic mixing between molecular orbitals and metal electronic states.

19.
J Phys Chem A ; 110(51): 14013-7, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181363

ABSTRACT

The recently developed metadynamics method is applied to the intramolecular hydrogen migration reactions of acetone in the gas phase. Comparison of different sets of collective coordinates allows efficient description of the underlying free energy surface. The simulations yielded numerous reactions: the enol-oxo tautomerism, the decomposition of acetone to various products, and rearrangement reactions. On the basis of the calculated activation barriers it is concluded that the enol-oxo tautomerism is the most frequent intramolecular proton-exchange process the acetone undergoes in the gas phase.

20.
Chemphyschem ; 7(6): 1229-34, 2006 Jun 12.
Article in English | MEDLINE | ID: mdl-16683282

ABSTRACT

We have studied the keto-enol interconversion of acetone to understand the mechanism of tautomerism relevant to numerous organic and biochemical processes. Applying the ab initio metadynamics method, we simulated the keto-enol isomerism both in the gas phase and in the presence of water. For the gas-phase intramolecular mechanism we show that no other hydrogen-transfer reactions can compete with the simple keto-enol tautomerism. We obtain an intermolecular mechanism and remarkable participation of water when acetone is solvated by neutral water. The simulations reveal that C deprotonation is the kinetic bottleneck of the keto-enol transformation, in agreement with experimental observations. The most interesting finding is the formation of short H-bonded chains of water molecules that provide the route for proton transfer from the carbon to the oxygen atom of acetone. The mechanistic picture that emerged from the present study involves proton migration and emphasizes the importance of active solvent participation in tautomeric interconversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...