Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Genet ; 59(11): 1058-1068, 2022 11.
Article in English | MEDLINE | ID: mdl-35232796

ABSTRACT

BACKGROUND: A neurodevelopmental syndrome was recently reported in four patients with SOX4 heterozygous missense variants in the high-mobility-group (HMG) DNA-binding domain. The present study aimed to consolidate clinical and genetic knowledge of this syndrome. METHODS: We newly identified 17 patients with SOX4 variants, predicted variant pathogenicity using in silico tests and in vitro functional assays and analysed the patients' phenotypes. RESULTS: All variants were novel, distinct and heterozygous. Seven HMG-domain missense and five stop-gain variants were classified as pathogenic or likely pathogenic variant (L/PV) as they precluded SOX4 transcriptional activity in vitro. Five HMG-domain and non-HMG-domain missense variants were classified as of uncertain significance (VUS) due to negative results from functional tests. When known, inheritance was de novo or from a mosaic unaffected or non-mosaic affected parent for patients with L/PV, and from a non-mosaic asymptomatic or affected parent for patients with VUS. All patients had neurodevelopmental, neurological and dysmorphic features, and at least one cardiovascular, ophthalmological, musculoskeletal or other somatic anomaly. Patients with L/PV were overall more affected than patients with VUS. They resembled patients with other neurodevelopmental diseases, including the SOX11-related and Coffin-Siris (CSS) syndromes, but lacked the most specific features of CSS. CONCLUSION: These findings consolidate evidence of a fairly non-specific neurodevelopmental syndrome due to SOX4 haploinsufficiency in neurogenesis and multiple other developmental processes.


Subject(s)
Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neurodevelopmental Disorders , Humans , Micrognathism/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Syndrome , Phenotype , DNA , SOXC Transcription Factors/genetics
2.
Eur J Hum Genet ; 20(2): 166-70, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21915152

ABSTRACT

In several laboratories, genome-wide array analysis has been implemented as the first tier diagnostic test for the identification of copy number changes in patients with mental retardation and/or congenital anomalies. The identification of a pathogenic copy number variant (CNV) is not only important to make a proper diagnosis but also to enable the accurate estimation of the recurrence risk to family members. Upon the identification of a de novo interstitial loss or gain, the risk recurrence is considered very low. However, this risk is 50% if one of the parents is carrier of a balanced insertional translocation (IT). The apparently de novo imbalance in a patient is then the consequence of the unbalanced transmission of a derivative chromosome involved in an IT. To determine the frequency with which insertional balanced translocations would be the origin of submicroscopic imbalances, we investigated the potential presence of an IT in a consecutive series of 477 interstitial CNVs, in which the parental origin has been tested by FISH, among 14,293 patients with developmental abnormalities referred for array. We demonstrate that ITs underlie ~2.1% of the apparently de novo, interstitial CNVs, indicating that submicroscopic ITs are at least sixfold more frequent than cytogenetically visible ITs. This risk estimate should be taken into account during counseling, and warrant parental and proband FISH testing wherever possible in patients with an apparently de novo, interstitial aberration.


Subject(s)
Abnormalities, Multiple/genetics , DNA Copy Number Variations , Developmental Disabilities/genetics , Mutagenesis, Insertional , Translocation, Genetic , Abnormalities, Multiple/diagnosis , Developmental Disabilities/diagnosis , Female , Genome-Wide Association Study , Humans , Male , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...