Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 11(10)2021 09 27.
Article in English | MEDLINE | ID: mdl-34568909

ABSTRACT

Mistranslation, the misincorporation of an amino acid not specified by the "standard" genetic code, occurs in all organisms. tRNA variants that increase mistranslation arise spontaneously and engineered tRNAs can achieve mistranslation frequencies approaching 10% in yeast and bacteria. Interestingly, human genomes contain tRNA variants with the potential to mistranslate. Cells cope with increased mistranslation through multiple mechanisms, though high levels cause proteotoxic stress. The goal of this study was to compare the genetic interactions and the impact on transcriptome and cellular growth of two tRNA variants that mistranslate at a similar frequency but create different amino acid substitutions in Saccharomyces cerevisiae. One tRNA variant inserts alanine at proline codons whereas the other inserts serine for arginine. Both tRNAs decreased growth rate, with the effect being greater for arginine to serine than for proline to alanine. The tRNA that substituted serine for arginine resulted in a heat shock response. In contrast, heat shock response was minimal for proline to alanine substitution. Further demonstrating the significance of the amino acid substitution, transcriptome analysis identified unique up- and down-regulated genes in response to each mistranslating tRNA. Number and extent of negative synthetic genetic interactions also differed depending upon type of mistranslation. Based on the unique responses observed for these mistranslating tRNAs, we predict that the potential of mistranslation to exacerbate diseases caused by proteotoxic stress depends on the tRNA variant. Furthermore, based on their unique transcriptomes and genetic interactions, different naturally occurring mistranslating tRNAs have the potential to negatively influence specific diseases.


Subject(s)
Protein Biosynthesis , Saccharomyces cerevisiae Proteins , Amino Acid Substitution , Humans , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
2.
Genetics ; 213(3): 849-863, 2019 11.
Article in English | MEDLINE | ID: mdl-31484688

ABSTRACT

Transfer RNAs (tRNAs) read the genetic code, translating nucleic acid sequence into protein. For tRNASer the anticodon does not specify its aminoacylation. For this reason, mutations in the tRNASer anticodon can result in amino acid substitutions, a process called mistranslation. Previously, we found that tRNASer with a proline anticodon was lethal to cells. However, by incorporating secondary mutations into the tRNA, mistranslation was dampened to a nonlethal level. The goal of this work was to identify second-site substitutions in tRNASer that modulate mistranslation to different levels. Targeted changes to putative identity elements led to total loss of tRNA function or significantly impaired cell growth. However, through genetic selection, we identified 22 substitutions that allow nontoxic mistranslation. These secondary mutations are primarily in single-stranded regions or substitute G:U base pairs for Watson-Crick pairs. Many of the variants are more toxic at low temperature and upon impairing the rapid tRNA decay pathway. We suggest that the majority of the secondary mutations affect the stability of the tRNA in cells. The temperature sensitivity of the tRNAs allows conditional mistranslation. Proteomic analysis demonstrated that tRNASer variants mistranslate to different extents with diminished growth correlating with increased mistranslation. When combined with a secondary mutation, other anticodon substitutions allow serine mistranslation at additional nonserine codons. These mistranslating tRNAs have applications in synthetic biology, by creating "statistical proteins," which may display a wider range of activities or substrate specificities than the homogenous form.


Subject(s)
Loss of Function Mutation , RNA, Transfer, Ser/genetics , Base Pairing , Protein Biosynthesis , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Transfer, Ser/metabolism , Saccharomyces cerevisiae
3.
Nucleic Acids Res ; 46(15): 7831-7843, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30007351

ABSTRACT

To develop a system for conditional amino acid misincorporation, we engineered tRNAs in the yeast Saccharomyces cerevisiae to be substrates of the rapid tRNA decay (RTD) pathway, such that they accumulate when RTD is turned off. We used this system to test the effects on growth of a library of tRNASer variants with all possible anticodons, and show that many are lethal when RTD is inhibited and the tRNA accumulates. Using mass spectrometry, we measured serine misincorporation in yeast containing each of six tRNA variants, and for five of them identified hundreds of peptides with serine substitutions at the targeted amino acid sites. Unexpectedly, we found that there is not a simple correlation between toxicity and the level of serine misincorporation; in particular, high levels of serine misincorporation can occur at cysteine residues without obvious growth defects. We also showed that toxic tRNAs can be used as a tool to identify sequence variants that reduce tRNA function. Finally, we generalized this method to another tRNA species, and generated conditionally toxic tRNATyr variants in a similar manner. This method should facilitate the study of tRNA biology and provide a tool to probe the effects of amino acid misincorporation on cellular physiology.


Subject(s)
Amino Acid Substitution/genetics , Protein Biosynthesis/genetics , RNA, Transfer, Ser/genetics , RNA, Transfer, Tyr/genetics , Saccharomyces cerevisiae/metabolism , Anticodon/genetics , RNA Stability/genetics , Saccharomyces cerevisiae/genetics , Serine/metabolism , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...