Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Res Sq ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699374

ABSTRACT

Air quality management commonly aims to mitigate emissions of oxides of nitrogen (NOx) from combustion, reducing ozone and particulate matter pollution. Despite such efforts, regulations have recently proven ineffective in rural areas like the Salton Sea Air Basin of Southern California, which routinely violates air quality standards. With $2 billion in annual agricultural sales and low population density, air quality in the region is likely influenced by year-round farming. We conducted NOx source apportionment using nitrogen stable isotopes of ambient NO2, which indicate a substantial contribution of soil-emitted NOx. The soil source strength was estimated based on the mean δ15N-NOx from each emission category in the California Air Resources Board's NOx inventory. Our annual average soil emission estimate for the air basin was 11.4 ± 4 tons/d, representing ~30% of the extant NOx inventory, 10× larger than the state's inventory. Therefore, the impact of soil NOx in agricultural regions must be re-evaluated.

2.
Chemosphere ; 338: 139585, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37478989

ABSTRACT

The degradation of asulam herbicide by photo electro-Fenton (PEF) and solar photo electro-Fenton (SPEF) processes was studied using an undivided electrochemical BDD/carbon-felt cell to generate H2O2 continuously. A central composite design combined with response surface methodology was applied to determine the optimal operating conditions of current intensity = 0.30 A, [Fe2+] = 0.3 mM, and [Na2SO4] = 0.11 M at pH 3 to achieve the complete degradation of asulam by electro-Fenton. Subsequently, the SPEF process was more efficient treatment compared to PEF, achieving a complete degradation of asulam and 98% of mineralization in 180 min. Moreover, 4-aminobenzenesulfonamide, 4-aminophenol, and 4-benzoquinone were detected as aromatic intermediates, whereas acetic acid, oxalic acid, and NO3- ions were identified as final degradation by-products. Thus, the SPEF process is an efficient alternative for the complete degradation and mineralization of herbicide asulam in an aqueous solution under natural sunlight.


Subject(s)
Herbicides , Water Pollutants, Chemical , Sunlight , Hydrogen Peroxide , Electrochemical Techniques/methods , Oxidation-Reduction , Electrodes
3.
Front Immunol ; 14: 1072810, 2023.
Article in English | MEDLINE | ID: mdl-36911698

ABSTRACT

Cancer immunotherapy has demonstrated great promise with several checkpoint inhibitors being approved as the first-line therapy for some types of cancer, and new engineered cytokines such as Neo2/15 now being evaluated in many studies. In this work, we designed antibody-cytokine chimera (ACC) scaffolding cytokine mimetics on a full-length tumor-specific antibody. We characterized the pharmacokinetic (PK) and pharmacodynamic (PD) properties of first-generation ACC TA99-Neo2/15, which synergized with DLnano-vaccines to suppress in vivo melanoma proliferation and induced significant systemic cytokine activation. A novel second-generation ACC TA99-HL2-KOA1, with retained IL-2Rß/γ binding and attenuated but preserved IL-2Rα binding, induced lower systemic cytokine activation with non-inferior protection in murine tumor studies. Transcriptomic analyses demonstrated an upregulation of Type I interferon responsive genes, particularly ISG15, in dendritic cells, macrophages and monocytes following TA99-HL2-KOA1 treatment. Characterization of additional ACCs in combination with cancer vaccines will likely be an important area of research for treating melanoma and other types of cancer.


Subject(s)
Melanoma , Nanoparticles , Vaccines, DNA , Mice , Animals , Cytokines , Antibodies , DNA
4.
Front Immunol ; 14: 1286831, 2023.
Article in English | MEDLINE | ID: mdl-38170025

ABSTRACT

The immune system is a network of molecules, signaling pathways, transcription, and effector modulation that controls, mitigates, or eradicates agents that may affect the integrity of the host. In mosquitoes, the innate immune system is highly efficient at combating foreign organisms but has the capacity to tolerate vector-borne diseases. These implications lead to replication, dissemination, and ultimately the transmission of pathogenic organisms when feeding on a host. In recent years, it has been discovered that the innate immune response of mosquitoes can trigger an enhanced immunity response to the stimulus of a previously encountered pathogen. This phenomenon, called immune priming, is characterized by a molecular response that prevents the replication of viruses, parasites, or bacteria in the body. It has been documented that immune priming can be stimulated through homologous organisms or molecules, although it has also been documented that closely related pathogens can generate an enhanced immune response to a second stimulus with a related organism. However, the cost involved in this immune response has not been characterized through the transmission of the immunological experience from parents to offspring by transgenerational immune priming (TGIP) in mosquitoes. Here, we address the impact on the rates of oviposition, hatching, development, and immune response in Aedes aegypti mosquitoes, the mothers of which were stimulated with dengue virus serotypes 2 and/or 4, having found a cost of TGIP on the development time of the progeny of mothers with heterologous infections, with respect to mothers with homologous infections. Our results showed a significant effect on the sex ratio, with females being more abundant than males. We found a decrease in transcripts of the siRNA pathway in daughters of mothers who had been exposed to an immune challenge with DV. Our research demonstrates that there are costs and benefits associated with TGIP in Aedes aegypti mosquitoes exposed to DV. Specifically, priming results in a lower viral load in the offspring of mothers who have previously been infected with the virus. Although some results from tests of two dengue virus serotypes show similarities, such as the percentage of pupae emergence, there are differences in the percentage of adult emergence, indicating differences in TGIP costs even within the same virus with different serotypes. This finding has crucial implications in the context of dengue virus transmission in endemic areas where multiple serotypes circulate simultaneously.


Subject(s)
Aedes , Dengue Virus , Dengue , Male , Female , Animals , Humans , Serogroup , Mosquito Vectors , Virus Replication/physiology
5.
Nat Commun ; 13(1): 695, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121758

ABSTRACT

HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs. Here, we show that DNA-encoded NLTs fold properly in vivo and induce autologous tier-2 nAbs in mice. DNA-encoded NLTs also uniquely induce both CD4 + and CD8 + T-cell responses as compared to corresponding protein immunizations. Murine neutralizing antibodies are identified with an advanced sequencing technology. The structure of an Env-Ab (C05) complex, as determined by cryo-EM, identifies a previously undescribed neutralizing Env C3/V5 epitope. Beyond potential functional immunity gains, DNA vaccines permit in vivo folding of structured antigens and provide significant cost and speed advantages for enabling rapid evaluation of new HIV vaccines.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Vaccines, DNA/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/ultrastructure , Antigens, Viral/immunology , Cell Line, Tumor , Cryoelectron Microscopy , Enzyme-Linked Immunospot Assay , Epitopes/immunology , HEK293 Cells , HIV Antibodies/ultrastructure , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/physiology , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice, Inbred BALB C , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Vaccination/methods , Vaccines, DNA/administration & dosage , env Gene Products, Human Immunodeficiency Virus/chemistry
6.
Rev. lasallista investig ; 18(2): 27-41, jul.-dic. 2021.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1365848

ABSTRACT

Resumen Introducción: Las miradas sobre cultura escolar propuestas en este ejercicio investigativo son resultado del trabajo en red realizado en el Centro de Pensamiento Pedagógico (CPP), en el cual, se promueve la reflexión en torno al quehacer educativo desde diversos ámbitos académicos, en el marco de los contextos educativos de Antioquia. Bajo este marco de referencia, el Objetivo de este artículo hace acento en comprender la cultura escolar de la subregión del bajo Cauca-antioqueño, territorio enmarcado en medio del conflicto armado. Materiales y métodos: la investigación se realizó desde un diseño cualitativo y está suscrita en un paradigma hermenéutico (interpretativo); específicamente, se orienta por el enfoque biográfico-narrativo. Participaron veinte maestros con los cuales se llevaron a cabo grupos de discusión y relatos de experiencia como técnica de recolección de información. Los datos se analizaron a partir del análisis narrativo haciendo uso de la matriz de interpretación narrativa propuestas por los investigadores. Los Resultados dan cuenta de que la cultura escolar en el Bajo Cauca antioqueño es compleja, cambiante y diferente a la de otras subregiones del departamento debido a las realidades propias del territorio. Conclusión: la cultura escolar en esta subregión antioqueña está matizada y se configura por tres aspectos significativos que son "El quehacer del maestro" "Las grietas de la pedagogía de la memoria" y "La fusión de cosmogonías paisas y costeñas, la presencia del río Cauca y la escuela como territorio de resiliencia".


Abstract Introduction: The views on school culture proposed in this investigative exercise are the result of the networking carried out in the Pedagogical Thought Center (CPP), in which reflection on educational work is promoted from various academic fields, within the framework of the educational contexts of Antioquia. Under this frame of reference, the Objective of this article emphasizes understanding the school culture of the lower Cauca-Antioqueño subregion, a territory framed in the middle of the armed conflict. Materials and methods: The research was carried out from a qualitative design and is subscribed to a hermeneutical (interpretive) paradigm; specifically, it is guided by the biographical-narrative approach. Twenty teachers participated with whom discussion groups and experience reports were carried out as an information gathering technique. The data were analyzed from the narrative analysis using the narrative interpretation matrix proposed by the researchers. The Results show that the school culture in Lower Cauca Antioquia is complex, changing and different from that of other subregions of the department due to the realities of the territory. It is Concluded that the school culture in this Antioquia subregion is nuanced and is configured by three significant aspects are "The work of the teacher" "The cracks of the pedagogy of memory" and "The fusion of cosmogonies of the country and the coast, the presence of the river Cauca and the school as a territory of resilience"


Resumo Introdução: As visões sobre cultura escolar propostas neste exercício investigativo resultam do trabalho em rede realizado no Centro de Pensamento Pedagógico (CPP), no qual é promovida a reflexão sobre o trabalho educativo a partir de várias áreas académicas, no âmbito dos contextos educativos de. Antioquia. Sob esse quadro de referência, o Objetivo deste artigo enfatiza a compreensão da cultura escolar da sub-região do baixo Cauca-Antioqueño, território enquadrado no meio do conflito armado. Materiais e métodos: a investigação foi desenvolvida a partir de um desenho qualitativo e está inscrita num paradigma hermenêutico (interpretativo); especificamente, é orientado pela abordagem biográfico-narrativa. Participaram 20 professores com os quais foram realizados grupos de discussão e relatos de experiência como técnica de coleta de informações. Os dados foram analisados a partir da análise narrativa por meio da matriz de interpretação narrativa proposta pelos pesquisadores. Os Resultados mostram que a cultura escolar no Baixo Cauca Antioquia é complexa, mutante e diferente das demais sub-regiões do departamento devido às realidades do território. Conclusão que a cultura escolar desta sub-região de Antioquia é matizada e configurada por três aspectos significativos: "O trabalho do professor" "As fissuras da pedagogia da memória" e "A fusão das cosmogonias do país e do litoral, a presença do rio Cauca e da escola como território de resiliência"

7.
Cell Rep Med ; 2(10): 100420, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34604818

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Lung/virology , T-Lymphocytes/immunology , Animals , Antibodies, Neutralizing/blood , COVID-19 Vaccines/therapeutic use , Female , Injections, Intradermal , Macaca mulatta , Male , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/therapeutic use , Viral Load
8.
ACS Pharmacol Transl Sci ; 4(4): 1349-1361, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34396059

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the highly contagious nature of SARS-CoV-2, it has infected more than 137 million individuals and caused more than 2.9 million deaths globally as of April 13, 2021. There is an urgent need to develop effective novel therapeutic strategies to treat or prevent this infection. Toward this goal, we focused on the development of monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike glycoprotein (SARS-CoV-2 Spike) present on the surface of virus particles as well as virus-infected cells. We isolated anti-SARS-CoV-2 Spike mAbs from animals immunized with a DNA vaccine. We then selected a highly potent set of mAbs against SARS-CoV-2 Spike protein and evaluated each candidate for their expression, target binding affinity, and neutralization potential using complementary ACE2-blocking and pseudovirus neutralization assays. We identified a total of 10 antibodies, which specifically and strongly bound to SARS-CoV-2 Spike, blocked the receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) interaction, and neutralized SARS-CoV-2. Furthermore, the glycomic profile of the antibodies suggested that they have high Fc-mediated effector functions. These antibodies should be further investigated for elucidating the neutralizing epitopes on Spike for the design of next-generation vaccines and for their potential in diagnostic as well as therapeutic utilities against SARS-CoV-2.

9.
Water Environ Res ; 93(3): 384-392, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32757433

ABSTRACT

Urbanization, livestock activities, and rainfall are factors that contribute to the contamination of inland water. This study aimed to determine the spatial and temporal variability of total coliforms (TCs) and fecal coliforms (FCs) in the surface water of San Pedro Lake as well as the gills and skin of Nile tilapia (Oreochromis niloticus) cultivated in the lake. The study consisted of seasonal sampling during an annual cycle. Using the multiple-tube fermentation technique, we quantified the microbial load of TCs in the lake and fish. The median of the TC and FC groups in surface water showed differences during the seasonal cycle, in which a significant correlation was observed between rainfall and bacterial load in the lake surface water. There was a significant seasonal difference between FCs and TCs in the gills as well as in skin FCs. Anthropogenic activities in the watershed combined with rainfall influence the bacterial load of San Pedro Lake. However, the water quality is still classified as excellent and uncontaminated according to Mexican regulations with lower FC values acceptable for higher FC values. In addition, the bacterial load in tilapia from San Pedro Lake does not pose a risk to human health. PRACTITIONER POINTS: Watershed livestock activities combined with rainfall increase fecal matter pollution in specific areas of the lake. San Pedro Lake displays satisfactory quality for aquatic life. The median fecal coliform population in lake fish (gills and skin) differs by season.


Subject(s)
Lakes , Water Microbiology , Animals , Bacteria , Environmental Monitoring , Gills , Humans , Mexico
10.
Cancer Immunol Res ; 8(11): 1354-1364, 2020 11.
Article in English | MEDLINE | ID: mdl-32913042

ABSTRACT

Cytolytic T cells (CTL) play a pivotal role in surveillance against tumors. Induction of CTL responses by vaccination may be challenging, as it requires direct transduction of target cells or special adjuvants to promote cross-presentation. Here, we observed induction of robust CTL responses through electroporation-facilitated, DNA-launched nanoparticle vaccination (DLnano-vaccines). Electroporation was observed to mediate transient tissue apoptosis and macrophage infiltration, which were deemed essential to the induction of CTLs by DLnano-vaccines through a systemic macrophage depletion study. Bolus delivery of protein nano-vaccines followed by electroporation, however, failed to induce CTLs, suggesting direct in vivo production of nano-vaccines may be required. Following these observations, new DLnano-vaccines scaffolding immunodominant melanoma Gp100 and Trp2 epitopes were designed and shown to induce more potent and consistent epitope-specific CTL responses than the corresponding DNA monomeric vaccines or CpG-adjuvanted peptide vaccines. DNA, but not recombinant protein, nano-vaccinations induced CTL responses to these epitopes and suppressed melanoma tumor growth in mouse models in a CD8+ T-cell-dependent fashion. Further studies to explore the use of DLnano-vaccines against other cancer targets and the biology with which they induce CTLs are important.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Nanoparticles/metabolism , Neoplasms/immunology , T-Lymphocytes/immunology , Vaccines, DNA/therapeutic use , Animals , Female , Humans , Mice , Vaccines, DNA/pharmacology
11.
iScience ; 23(8): 101399, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32763137

ABSTRACT

CD4+ T cells play an important role in the maturation of the antibody responses. Conjugation of identified CD4+ T cell helper epitope to the target antigen has been developed as a strategy to enhance vaccine-induced humoral immunity. In this work, we reported the identification of a novel HLA-IAb helper epitope LS-3 from Aquifex aeolicus. In silico analysis predicted this epitope to have high binding affinity to common human HLA alleles and have complementary binding coverage to the established PADRE epitope. Introduction of HLA-IAb knockout mutations to the LS-3 epitope significantly attenuated humoral responses induced by a vaccine containing this epitope. Finally, engineered fusion of the epitope to a model antigen, influenza hemagglutinin, significantly improved both binding and hemagglutination inhibition antibody responses in mice receiving DNA or protein vaccines. In summary, LS-3 and additional identified CD4+ helper epitopes may be further explored to improve vaccine responses in translational studies.

12.
Nat Commun ; 11(1): 2601, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32433465

ABSTRACT

The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen of coronaviruses, which is currently in clinical study. Here we build on this prior experience to generate a synthetic DNA-based vaccine candidate targeting SARS-CoV-2 S protein. The engineered construct, INO-4800, results in robust expression of the S protein in vitro. Following immunization of mice and guinea pigs with INO-4800 we measure antigen-specific T cell responses, functional antibodies which neutralize the SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and biodistribution of SARS-CoV-2 targeting antibodies to the lungs. This preliminary dataset identifies INO-4800 as a potential COVID-19 vaccine candidate, supporting further translational study.


Subject(s)
Antigens, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antigens, Viral/chemistry , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Epitope Mapping , Guinea Pigs , Immunity, Humoral , Immunoglobulin G/immunology , Lung/immunology , Mice , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus , Models, Animal , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Viral Vaccines/chemistry
13.
Adv Sci (Weinh) ; 7(8): 1902802, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32328416

ABSTRACT

Nanotechnologies are considered to be of growing importance to the vaccine field. Through decoration of immunogens on multivalent nanoparticles, designed nanovaccines can elicit improved humoral immunity. However, significant practical and monetary challenges in large-scale production of nanovaccines have impeded their widespread clinical translation. Here, an alternative approach is illustrated integrating computational protein modeling and adaptive electroporation-mediated synthetic DNA delivery, thus enabling direct in vivo production of nanovaccines. DNA-launched nanoparticles are demonstrated displaying an HIV immunogen spontaneously self-assembled in vivo. DNA-launched nanovaccines induce stronger humoral responses than their monomeric counterparts in both mice and guinea pigs, and uniquely elicit CD8+ effector T-cell immunity as compared to recombinant protein nanovaccines. Improvements in vaccine responses recapitulate when DNA-launched nanovaccines with alternative scaffolds and decorated antigen are designed and evaluated. Finally, evaluation of functional immune responses induced by DLnanovaccines demonstrates that, in comparison to control mice or mice immunized with DNA-encoded hemagglutinin monomer, mice immunized with a DNA-launched hemagglutinin nanoparticle vaccine fully survive a lethal influenza challenge, and have substantially lower viral load, weight loss, and influenza-induced lung pathology. Additional study of these next-generation in vivo-produced nanovaccines may offer advantages for immunization against multiple disease targets.

14.
J Clin Invest ; 130(2): 827-837, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31697648

ABSTRACT

Interventions to prevent HIV-1 infection and alternative tools in HIV cure therapy remain pressing goals. Recently, numerous broadly neutralizing HIV-1 monoclonal antibodies (bNAbs) have been developed that possess the characteristics necessary for potential prophylactic or therapeutic approaches. However, formulation complexities, especially for multiantibody deliveries, long infusion times, and production issues could limit the use of these bNAbs when deployed, globally affecting their potential application. Here, we describe an approach utilizing synthetic DNA-encoded monoclonal antibodies (dmAbs) for direct in vivo production of prespecified neutralizing activity. We designed 16 different bNAbs as dmAb cassettes and studied their activity in small and large animals. Sera from animals administered dmAbs neutralized multiple HIV-1 isolates with activity similar to that of their parental recombinant mAbs. Delivery of multiple dmAbs to a single animal led to increased neutralization breadth. Two dmAbs, PGDM1400 and PGT121, were advanced into nonhuman primates for study. High peak-circulating levels (between 6 and 34 µg/ml) of these dmAbs were measured, and the sera of all animals displayed broad neutralizing activity. The dmAb approach provides an important local delivery platform for the in vivo generation of HIV-1 bNAbs and for other infectious disease antibodies.


Subject(s)
Antibodies, Neutralizing/pharmacology , HIV Antibodies/pharmacology , HIV-1/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/genetics , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Female , HEK293 Cells , HIV Antibodies/genetics , HIV Antibodies/immunology , Humans , Mice , Mice, Inbred BALB C
15.
JCI Insight ; 4(8)2019 04 18.
Article in English | MEDLINE | ID: mdl-30996140

ABSTRACT

Specific antibody therapy, including mAbs and bispecific T cell engagers (BiTEs), are important new tools for cancer immunotherapy. However, these approaches are slow to develop and may be limited in their production, thus restricting the patients who can access these treatments. BiTEs exhibit a particularly short half-life and difficult production. The development of an approach allowing simplified development, delivery, and in vivo production would be an important advance. Here we describe the development of a designed synthetic DNA plasmid, which we optimized to permit high expression of an anti-HER2 antibody (HER2dMAb) and delivered it into animals through adaptive electroporation. HER2dMAb was efficiently expressed in vitro and in vivo, reaching levels of 50 µg/ml in mouse sera. Mechanistically, HER2dMAb blocked HER2 signaling and induced antibody-dependent cytotoxicity. HER2dMAb delayed tumor progression for HER2-expressing ovarian and breast cancer models. We next used the HER2dMAb single-chain variable fragment portion to engineer a DNA-encoded BiTE (DBiTE). This HER2DBiTE was expressed in vivo for approximately 4 months after a single administration. The HER2DBiTE was highly cytolytic and delayed cancer progression in mice. These studies illustrate an approach to generate DBiTEs in vivo, which represent promising immunotherapies for HER2+ tumors, including ovarian and potentially other cancers.


Subject(s)
Antibodies, Bispecific/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Drug Delivery Systems/methods , Neoplasms/drug therapy , Animals , Antibodies, Bispecific/genetics , Antibodies, Monoclonal/genetics , Cell Line, Tumor , Electroporation/methods , Female , Humans , Male , Mice , Neoplasms/immunology , Neoplasms/pathology , Plasmids/administration & dosage , Plasmids/genetics , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
16.
Environ Technol ; 40(18): 2436-2445, 2019 Jul.
Article in English | MEDLINE | ID: mdl-29457761

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAID) are compounds frequently found in municipal wastewater and their degradation by conventional wastewater treatment plants (WWTP) is generally incomplete. This study compared the efficiency of two advanced oxidation processes (AOP), namely heterogeneous photocatalysis (HP) and electro-Fenton (EF), in the degradation of a mixture of common NSAID (diclofenac, ibuprofen and naproxen) dissolved in either deionized water or effluent from a WWTP. Both processes were effective in degrading the NSAID mixture and the trend of degradation was as follows, diclofenac > naproxen > ibuprofen. EF with a current density of 40 mA cm-2 and 0.3 mmol Fe2+ L-1 was the most efficient process to mineralize the organic compounds, achieving up to 92% TOC removal in deionized water and 90% in the WWTP effluent after 3 h of reaction. HP with 1.4 g TiO2 L-1 at pH 7 under sunlight, produced 85% TOC removal in deionized water and 39% in WWTP effluent also after 3 h treatment. The lower TOC removal efficiency shown by HP with the WWTP effluent was attributed mainly to the scavenging of reactive species by background organic matter in the wastewater. On the contrary, inorganic ions in the wastewater may produce oxidazing species during the EF process, which contributes to a higher degradation efficiency. EF is a promising option for the treatment of anti-inflammatory pharmaceuticals in municipal WWTP at competitive electrical energy efficiencies.


Subject(s)
Wastewater , Water Pollutants, Chemical , Anti-Inflammatory Agents, Non-Steroidal , Diclofenac , Hydrogen Peroxide , Ibuprofen , Naproxen
17.
J Sep Sci ; 41(24): 4488-4497, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30352136

ABSTRACT

An automated method for the analysis of methylparaben, propylparaben, benzophenone-3, and benzophenone-4 in water effluents via on-line solid-phase extraction coupled with high-performance liquid chromatography/ultraviolet detection was proposed. The preconcentration parameters were studied using Plackett-Burman and Box-Behnken experimental designs using a C18 sorbent material. The results demonstrated that the eluent volume, composition, and sorbent amount were statistically significant. Optimal conditions for these variables were an eluent volume of 1.55 mL, eluent composition of acetonitrile 100% v/v, and sorbent amount of 100 mg. The eluted sample was analyzed on-line using high-performance liquid chromatography equipped with a reversed-phase C18 column and ultraviolet detection. Separation of the analytes was achieved in 15 min using gradient elution with acetonitrile/water. A simple, sensitive, and rapid analytical method was proposed for personal care compounds without sophisticated or expensive equipment. The limits of detection were 1.20, 1.73, 2.51, and 4.67 µg/L for propylparaben, methylparaben, benzophenone-3, and benzophenone-4, respectively. The analysis time was 48 min, consuming only 1.59 mL of eluent acetonitrile for the solid phase extraction step, with minimal sample handling. The method was applied to the analysis of spiked swimming pool and wastewater, with recoveries between 65-107%. These results indicate the reliability of the flow-based procedure.


Subject(s)
Benzophenones/analysis , Chemical Fractionation , Parabens/analysis , Solid Phase Extraction , Water Pollutants, Chemical/chemistry , Chromatography, High Pressure Liquid , Spectrophotometry, Ultraviolet
18.
EBioMedicine ; 35: 97-105, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30174283

ABSTRACT

BACKGROUND: Despite vigorous and ongoing efforts, active immunizations have yet to induce broadly neutralizing antibodies (bNAbs) against HIV-1. An alternative approach is to achieve prophylaxis with long-term expression of potent biologic HIV-1 inhibitors with Adeno-associated Virus (AAV), which could however be limited by hosts' humoral and cellular responses. An approach that facilitates in vivo production of these complex molecules independent of viral-vectored delivery will be a major advantage. METHODS: We used synthetic DNA and electroporation (DNA/EP) to deliver an anti-HIV-1 immunoadhesin eCD4-Ig in vivo. In addition, we engineered a TPST2 enzyme variant (IgE-TPST2), characterized its intracellular trafficking patterns and determined its ability to post-translationally sulfate eCD4-Ig in vivo. FINDINGS: With a single round of DNA injection, a peak expression level of 80-100µg/mL was observed in mice 14 days post injection (d.p.i). The engineered IgE-TPST2 enzyme trafficked efficiently to the Trans-Golgi Network (TGN). Co-administrating low dose of plasmid IgE-TPST2 with plasmid eCD4-Ig enhanced the potency of eCD4-Ig by three-fold in the ex vivo neutralization assay against the global panel of HIV-1 pseudoviruses. INTERPRETATION: This work provides a proof-of-concept for delivering anti-HIV-1 immunoadhesins by advanced nucleic acid technology and modulating protein functions in vivo with targeted enzyme-mediated post-translational modifications. FUNDING: This work is supported by NIH IPCAVD Grant U19 Al109646-04, Martin Delaney Collaboration for HIV Cure Research and W.W. Smith Charitable Trust.


Subject(s)
Antibodies, Neutralizing/metabolism , CD4 Immunoadhesins/metabolism , DNA/metabolism , Electroporation/methods , HIV Antibodies/metabolism , Immunoglobulin E/metabolism , Sulfates/metabolism , Animals , Female , HEK293 Cells , Humans , Mice, Inbred BALB C , Subcellular Fractions/metabolism , Transfection
19.
Chemosphere ; 192: 225-233, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29102867

ABSTRACT

A commercial sulfamethoxazole + trimethoprim formulation has been degraded in 0.050 M Na2SO4 at pH 3.0 by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF), photoelectro-Fenton with a 6-W UVA lamp (PEF) and solar photoelectro-Fenton (SPEF). The tests were performed in an undivided cell with an IrO2-based, Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. The anode material had little effect on the accumulated H2O2 concentration. Both drugs always obeyed a pseudo-first-order decay with low apparent rate constant in EO-H2O2. Much higher values were found in EF, PEF and SPEF, showing no difference because the main oxidant was always OH formed from Fenton's reaction between H2O2 and added Fe2+. The solution mineralization increased in the sequence EO-H2O2 < EF < PEF < SPEF regardless of the anode. The IrO2-based and Pt anodes behaved similarly but BDD was always more powerful. In SPEF, similar mineralization profiles were found for all anodes because of the rapid removal of photoactive intermediates by sunlight. About 87% mineralization was obtained as maximum for the powerful SPEF with BDD anode. Addition of Cl- enhanced the decay of both drugs due to their quicker reaction with generated active chlorine, but the formation of persistent chloroderivatives decelerated the mineralization process. Final carboxylic acids like oxalic and oxamic were detected, yielding Fe(III) complexes that remained stable in EF with BDD but were rapidly photolyzed in SPEF with BDD, explaining its superior mineralization ability.


Subject(s)
Anti-Infective Agents/chemistry , Fresh Water/chemistry , Sulfamethoxazole/chemistry , Trimethoprim/chemistry , Water Pollutants, Chemical/chemistry , Boron/chemistry , Diamond/chemistry , Electrochemistry , Electrodes , Ferric Compounds/chemistry , Fresh Water/analysis , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Photolysis , Sunlight
20.
Talanta ; 168: 291-297, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28391856

ABSTRACT

An on-line solid phase extraction coupled to liquid chromatography with UV detection (SPE/LC-UV) method was automated by the multisyringe flow-injection analysis (MSFIA) system for the determination of three phthalic acid esters (PAEs). The PAEs determined in drinking water stored in polyethylene terephthalate (PET) bottles of ten commercial brands were dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP). C18-bonded silica membrane was used for isolation and enrichment of the PAEs in water samples. The calibration range of the SPE/LC-UV method was 2.5-100µgL-1 for DMP and DEP and 10-100µgL-1 for DBP with correlation coefficients (r) ranging from 0.9970 to 0.9975. Limits of detection (LODs) were between 0.7 and 2.4µgL-1. Inter-day reproducibility performed at two concentration levels (10 and 100µgL-1) expressed as relative standard deviation (%RSD) were found in the range of 0.9-4.0%. The solvent volume was reduced to 18mL with a total analysis time of 48min per sample. The major species detected in bottled water samples was DBP reaching concentrations between 20.5 and 82.8µgL-1. The recovery percentages for the three analytes in drinking water were 80-115%. The migration test showed a great variation in the sum of migrated PAEs level (10.2-50.6µgL-1) among the PET bottle brands analyzed indicating that the presence of these contaminants in the plastic containers may depend on raw materials and the conditions used during their production process.


Subject(s)
Chromatography, Liquid/instrumentation , Chromatography, Liquid/methods , Drinking Water/analysis , Phthalic Acids/analysis , Phthalic Acids/isolation & purification , Plastics/chemistry , Water Pollutants, Chemical/analysis , Humans , Solid Phase Extraction , Ultraviolet Rays , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...