Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Med Chem ; 63(3): 1298-1312, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31935327

ABSTRACT

Our previous efforts have led to the development of two potent NNRTIs, K-5a2 and 25a, exhibiting effective anti-HIV-1 potency and resistance profiles compared with etravirine. However, both inhibitors suffered from potent hERG inhibition and short half-life. In this article, with K-5a2 and etravirine as leads, series of novel fluorine-substituted diarylpyrimidine derivatives were designed via molecular hybridization and bioisosterism strategies. The results indicated 24b was the most active inhibitor, exhibiting broad-spectrum activity (EC50 = 3.60-21.5 nM) against resistant strains, significantly lower cytotoxicity (CC50= 155 µM), and reduced hERG inhibition (IC50 > 30 µM). Crystallographic studies confirmed the binding of 24b and the role of the fluorine atom, as well as optimal contacts of a nitrile group with the main-chain carbonyl group of H235. Furthermore, 24b showed longer half-life and favorable safety properties. All the results demonstrated that 24b has significant promise in circumventing drug resistance as an anti-HIV-1 candidate.


Subject(s)
Anti-HIV Agents/pharmacology , ERG1 Potassium Channel/metabolism , HIV-1/drug effects , Pyrimidines/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Thiophenes/pharmacology , Animals , Anti-HIV Agents/metabolism , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/toxicity , Cell Line , Crystallography, X-Ray , Drug Discovery , Female , Fluorine/chemistry , HIV Reverse Transcriptase/metabolism , Humans , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Protein Binding , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Pyrimidines/toxicity , Rats, Wistar , Reverse Transcriptase Inhibitors/metabolism , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/toxicity , Structure-Activity Relationship , Thiophenes/metabolism , Thiophenes/pharmacokinetics , Thiophenes/toxicity
2.
J Med Chem ; 62(21): 9996-10002, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31603676

ABSTRACT

HIV-1 reverse transcriptase (RT) is an essential enzyme, targeting half of approved anti-AIDS drugs. While nucleoside RT inhibitors (NRTIs) are DNA chain terminators, the nucleotide-competing RT inhibitor (NcRTI) INDOPY-1 blocks dNTP binding to RT. Lack of structural information hindered INDOPY-1 improvement. Here we report the HIV-1 RT/DNA/INDOPY-1 crystal structure, revealing a unique mode of inhibitor binding at the polymerase active site without involving catalytic metal ions. The structure may enable new strategies for developing NcRTIs.


Subject(s)
HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , HIV-1/enzymology , Indoles/chemistry , Indoles/pharmacology , Nitriles/chemistry , Nitriles/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , HIV Reverse Transcriptase/chemistry , Models, Molecular , Protein Conformation
3.
Food Chem ; 147: 92-7, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24206690

ABSTRACT

Hydroponics is a water, energy, space, and cost efficient system for growing plants in constrained spaces or land exhausted areas. Precise control of hydroponic nutrients is essential for growing healthy plants and producing high yields. In this article we report for the first time on a new computer-operated analytical platform which can be readily used for the determination of essential nutrients in hydroponic growing systems. The liquid-handling system uses inexpensive components (i.e., peristaltic pump and solenoid valves), which are discretely computer-operated to automatically condition, calibrate and clean a multi-probe of solid-contact ion-selective electrodes (ISEs). These ISEs, which are based on carbon nanotubes, offer high portability, robustness and easy maintenance and storage. With this new computer-operated analytical platform we performed automatic measurements of K(+), Ca(2+), NO3(-) and Cl(-) during tomato plants growth in order to assure optimal nutritional uptake and tomato production.


Subject(s)
Automation/methods , Culture Media/analysis , Hydroponics/methods , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Culture Media/metabolism , Hydroponics/instrumentation
4.
Front Pharmacol ; 3: 58, 2012.
Article in English | MEDLINE | ID: mdl-22529810

ABSTRACT

Several aldo-keto reductase (AKR) enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low K(m) and k(cat) values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3), as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA) biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in ß-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.

5.
Anal Chem ; 83(22): 8810-5, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21961835

ABSTRACT

In this study, we developed a potentiometric planar strip cell based on single-walled carbon nanotubes that aims to exploit the attributes of solid-contact ion-selective electrodes for decentralized measurements. That is, the ion-selective and reference electrodes have been simultaneously miniaturized onto a plastic planar substrate by screen-printing and drop-casting techniques, obtaining disposable strip cells with satisfactory performance characteristics (i.e., the sensitivity is 57.4 ± 1.3 mV/dec, the response time is ≤30 s within the linear range from log a(K+) = -5 to -2, and the limit of detection is -6.5), no need of maintenance during long dry storage, quick signal stabilization, and light insensitivity in short-term measurements. We also show how the new potentiometric strip cell makes it possible to perform decentralized and rapid determinations of ions in real samples, such as saliva or beverages.


Subject(s)
Nanotubes, Carbon/economics , Transducers/economics , Electrodes/economics , Nanotubes, Carbon/chemistry , Potentiometry/economics , Potentiometry/instrumentation
6.
Biochem J ; 440(3): 335-44, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21851338

ABSTRACT

Human AKR (aldo-keto reductase) 1C proteins (AKR1C1-AKR1C4) exhibit relevant activity with steroids, regulating hormone signalling at the pre-receptor level. In the present study, investigate the activity of the four human AKR1C enzymes with retinol and retinaldehyde. All of the enzymes except AKR1C2 showed retinaldehyde reductase activity with low Km values (~1 µM). The kcat values were also low (0.18-0.6 min-1), except for AKR1C3 reduction of 9-cis-retinaldehyde whose kcat was remarkably higher (13 min-1). Structural modelling of the AKR1C complexes with 9-cis-retinaldehyde indicated a distinct conformation of Trp227, caused by changes in residue 226 that may contribute to the activity differences observed. This was partially supported by the kinetics of the AKR1C3 R226P mutant. Retinol/retinaldehyde conversion, combined with the use of the inhibitor flufenamic acid, indicated a relevant role for endogenous AKR1Cs in retinaldehyde reduction in MCF-7 breast cancer cells. Overexpression of AKR1C proteins depleted RA (retinoic acid) transactivation in HeLa cells treated with retinol. Thus AKR1Cs may decrease RA levels in vivo. Finally, by using lithocholic acid as an AKR1C3 inhibitor and UVI2024 as an RA receptor antagonist, we provide evidence that the pro-proliferative action of AKR1C3 in HL-60 cells involves the RA signalling pathway and that this is in part due to the retinaldehyde reductase activity of AKR1C3.


Subject(s)
20-Hydroxysteroid Dehydrogenases/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Retinaldehyde/chemistry , 20-Hydroxysteroid Dehydrogenases/chemistry , 3-Hydroxysteroid Dehydrogenases/chemistry , 3-Hydroxysteroid Dehydrogenases/genetics , Aldo-Keto Reductase Family 1 Member C3 , Amino Acid Substitution , Binding Sites , Cell Line, Tumor , Cell Proliferation , Humans , Hydroxyprostaglandin Dehydrogenases/chemistry , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxysteroid Dehydrogenases/chemistry , Hydroxysteroid Dehydrogenases/metabolism , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Protein Binding , Receptors, Retinoic Acid/antagonists & inhibitors , Receptors, Retinoic Acid/metabolism , Retinaldehyde/pharmacology , Retinaldehyde/physiology , Substrate Specificity , Transcriptional Activation , Vitamin A/chemistry , Vitamin A/pharmacology , Vitamin A/physiology
7.
Anal Chem ; 83(14): 5783-8, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21627300

ABSTRACT

In this technical note, we report a new all-solid-state planar reference electrode based on single-walled carbon nanotubes and photocured poly(n-butylacrylate) (poly(nBA)) membrane containing the Ag/AgCl/Cl(-) ion system. Single-walled carbon nanotubes functionalized with octadecylamide (SWCNT-ODA) and deposited by drop-casting onto a disposable screen-printed electrode are an excellent all-solid-state transducer. The novel potentiometric planar reference electrode shows low potential variability (calibration slopes inferior to 2 mV/dec) for a wide range of chemical species (i.e., ions, small molecules, proteins) in a wide calibration range, redox pairs, changes in pH, and changes in ambient light. Potentiometric medium-term signal stability (-0.9 ± 0.2 mV/h) and electrochemical impedance characterization confirm the correct solid contact between the SWCNT-ODA layer and photocured poly(nBA) membrane. Overall, the materials used and the simple fabrication by screen-printing and drop-casting enable a high throughput and highly parallel and cost-effective mass manufacture of the new disposable reference electrode. Moreover, the reference electrode has a long shelf life, a characteristic that can be of special interest in decentralized and multiplexing potentiometric analysis.

8.
Chem Biol Interact ; 191(1-3): 199-205, 2011 May 30.
Article in English | MEDLINE | ID: mdl-21329680

ABSTRACT

NADP(H)-dependent cytosolic aldo-keto reductases (AKR) are mostly monomeric enzymes which fold into a typical (α/ß)(8)-barrel structure. Substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable loops (A, B, and C). Based on sequence identity, AKR have been grouped into families, namely AKR1-AKR15, containing multiple subfamilies. Two human enzymes from the AKR1B subfamily (AKR1B1 and AKR1B10) are of special interest. AKR1B1 (aldose reductase) is related to secondary diabetic complications, while AKR1B10 is induced in cancer cells and is highly active with all-trans-retinaldehyde. Residues interacting with all-trans-retinaldehyde and differing between AKR1B1 and AKR1B10 are Leu125Lys and Val131Ala (loop A), Leu301Val, Ser303Gln, and Cys304Ser (loop C). Recently, we demonstrated the importance of Lys125 as a determinant of AKR1B10 specificity for retinoids. Residues 301 and 304 are also involved in interactions with substrates or inhibitors, and thus we checked their contribution to retinoid specificity. We also extended our study with retinoids to rodent members of the AKR1B subfamily: AKR1B3 (aldose reductase), AKR1B7 (mouse vas deferens protein), AKR1B8 (fibroblast-growth factor 1-regulated protein), and AKR1B9 (Chinese hamster ovary reductase), which were tested against all-trans isomers of retinaldehyde and retinol. All enzymes were active with retinaldehyde, but with k(cat) values (0.02-0.52 min(-1)) much lower than that of AKR1B10 (27 min(-1)). None of the enzymes showed oxidizing activity with retinol. Since these enzymes (except AKR1B3) have Lys125, other residues should account for retinaldehyde specificity. Here, by using site-directed mutagenesis and molecular modeling, we further delineate the contribution of residues 301 and 304. We demonstrate that besides Lys125, Ser304 is a major structural determinant for all-trans-retinaldehyde specificity of AKR1B10.


Subject(s)
Aldehyde Reductase/metabolism , Retinaldehyde/metabolism , Aldehyde Reductase/chemistry , Aldehyde Reductase/genetics , Amino Acid Sequence , Animals , Binding Sites , Computational Biology , Cricetinae , Humans , Kinetics , Mice , Molecular Dynamics Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , NADP/metabolism , Protein Conformation , Rats , Substrate Specificity
9.
Anal Bioanal Chem ; 399(10): 3613-22, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21318254

ABSTRACT

A novel potentiometric solid-state reference electrode containing single-walled carbon nanotubes as the transducer layer between a polyacrylate membrane and the conductor is reported here. Single-walled carbon nanotubes act as an efficient transducer of the constant potentiometric signal originating from the reference membrane containing the Ag/AgCl/Cl(-) ions system, and they are needed to obtain a stable reference potentiometric signal. Furthermore, we have taken advantage of the light insensitivity of single-walled carbon nanotubes to improve the analytical performance characteristics of previously reported solid-state reference electrodes. Four different polyacrylate polymers have been selected in order to identify the most efficient reservoir for the Ag/AgCl system. Finally, two different arrangements have been assessed: (1) a solid-state reference electrode using photo-polymerised n-butyl acrylate polymer and (2) a thermo-polymerised methyl methacrylate:n-butyl acrylate (1:10) polymer. The sensitivity to various salts, pH and light, as well as time of response and stability, has been tested: the best results were obtained using single-walled carbon nanotubes and photo-polymerised n-butyl acrylate polymer. Water transport plays an important role in the potentiometric performance of acrylate membranes, so a new screening test method has been developed to qualitatively assess the difference in water percolation between the polyacrylic membranes studied. The results presented here open the way for the true miniaturisation of potentiometric systems using the excellent properties of single-walled carbon nanotubes.

10.
Analyst ; 135(9): 2420-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20652191

ABSTRACT

A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.

11.
Chem Biol Interact ; 178(1-3): 171-7, 2009 Mar 16.
Article in English | MEDLINE | ID: mdl-19014918

ABSTRACT

NADP(H)-dependent cytosolic aldo-keto reductases (AKRs) have been added to the group of enzymes which contribute to oxidoreductive conversions of retinoids. Recently, we found that two members from the AKR1B subfamily (AKR1B1 and AKRB10) were active in the reduction of all-trans- and 9-cis-retinaldehyde, with K(m) values in the micromolar range, but with very different k(cat) values. With all-trans-retinaldehyde, AKR1B10 shows a much higher k(cat) value than AKR1B1 (18 min(-1)vs. 0.37 min(-1)) and a catalytic efficiency comparable to that of the best retinaldehyde reductases. Structural, molecular dynamics and site-directed mutagenesis studies on AKR1B1 and AKR1B10 point that subtle differences at the entrance of their retinoid-binding site, especially at position 125, are determinant for the all-trans-retinaldehyde specificity of AKR1B10. Substitutions in the retinoid cyclohexene ring, analyzed here further, also influence such specificity. Overall it is suggested that the rate-limiting step in the reaction mechanism with retinaldehyde differs between AKR1B1 and AKR1B10. In addition, we demonstrate here that enzymatic activity of AKR1B1 and AKR1B10 lowers all-trans- and 9-cis-retinoic acid-dependent trans-activation in living cells, indicating that both enzymes may contribute to pre-receptor regulation of retinoic acid and retinoid X nuclear receptors. This result supports that overexpression of AKR1B10 in cancer (an updated review on this topic is included) may contribute to dedifferentiation and tumor development.


Subject(s)
Alcohol Oxidoreductases/metabolism , Retinoids/pharmacology , Tretinoin/metabolism , Alcohol Oxidoreductases/genetics , Aldehyde Reductase , Aldo-Keto Reductases , Base Sequence , Biocatalysis , Cells, Cultured , Cloning, Molecular , DNA Primers , DNA, Complementary , HeLa Cells , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Retinoids/metabolism , Substrate Specificity
12.
Proc Natl Acad Sci U S A ; 104(52): 20764-9, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18087047

ABSTRACT

AKR1B10 is a human aldo-keto reductase (AKR) found to be elevated in several cancer types and in precancerous lesions. In vitro, AKR1B10 exhibits a much higher retinaldehyde reductase activity than any other human AKR, including AKR1B1 (aldose reductase). We here demonstrate that AKR1B10 also acts as a retinaldehyde reductase in vivo. This activity may be relevant in controlling the first step of retinoic acid synthesis. Up-regulation of AKR1B10, resulting in retinoic acid depletion, may lead to cellular proliferation. Both in vitro and in vivo activities of AKR1B10 were inhibited by tolrestat, an AKR1B1 inhibitor developed for diabetes treatment. The crystal structure of the ternary complex AKR1B10-NADP(+)-tolrestat was determined at 1.25-A resolution. Molecular dynamics models of AKR1B10 and AKR1B1 with retinaldehyde isomers and site-directed mutagenesis show that subtle differences at the entrance of the retinoid-binding site, especially at position 125, are determinant for the all-trans-retinaldehyde specificity of AKR1B10. Substitutions in the retinaldehyde cyclohexene ring also influence the specificity. These structural features should facilitate the design of specific inhibitors, with potential use in cancer and diabetes treatments.


Subject(s)
Aldehyde Reductase/chemistry , Aldehyde Reductase/physiology , Gene Expression Regulation, Neoplastic , Oxidoreductases/metabolism , Retinaldehyde/chemistry , Tretinoin , Alcohol Oxidoreductases/metabolism , Aldehyde Reductase/metabolism , Aldo-Keto Reductases , Animals , Biomarkers, Tumor/metabolism , COS Cells , Chlorocebus aethiops , Computer Simulation , Crystallography, X-Ray , Humans , Naphthalenes/pharmacology , Protein Conformation , Protein Structure, Tertiary , Tretinoin/metabolism
13.
Biochem J ; 399(1): 101-9, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16787387

ABSTRACT

Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low K(m) values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low K(m) values for retinoids (0.12-1.1 microM), whilst they strongly differ in their kcat values, which range from 0.35 min(-1) for AKR1B1 to 302 min(-1) for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo.


Subject(s)
Acyl-CoA Dehydrogenase/metabolism , Alcohol Oxidoreductases/metabolism , Butyryl-CoA Dehydrogenase/metabolism , Retinoids/metabolism , Aldehyde Reductase , Aldo-Keto Reductases , Animals , Cell Line , Gene Expression Regulation, Enzymologic , Humans , Insecta
14.
Biochem J ; 375(Pt 3): 623-31, 2003 Nov 01.
Article in English | MEDLINE | ID: mdl-12901717

ABSTRACT

eIF2 (eukaryotic translation-initiation factor 2) is a substrate and an interacting partner for CK2 (protein kinase CK2). Co-immuno-precipitation of CK2 with eIF2beta has now been observed in HeLa cells, overexpressing haemagglutinin-tagged human recombinant eIF2beta. A direct association between His6-tagged human recombinant forms of eIF2beta subunit and both the catalytic (CK2alpha) and the regulatory (CK2beta) subunits of CK2 has also been shown by using different techniques. Surface plasmon resonance analysis indicated a high affinity in the interaction between eIF2beta and CK2alpha, whereas the affinity for the association with CK2beta is much lower. Free CK2alpha is unable to phosphorylate eIF2beta, whereas up to 1.2 mol of phosphate/mol of eIF2beta was incorporated by the reconstituted CK2 holoenzyme. The N-terminal third part of eIF2beta is dispensable for binding to either CK2alpha or CK2beta, although it contains the phosphorylation sites for CK2. The remaining central/C-terminal part of eIF2beta is not phosphorylated by CK2, but is sufficient for binding to both CK2 subunits. The presence of eIF2beta inhibited CK2alpha activity on calmodulin and beta-casein, but it had a minor effect on that of the reconstituted CK2 holoenzyme. The truncated forms corresponding to the N-terminal or central/C-terminal regions of eIF2beta were much less inhibitory than the intact subunit. The results demonstrate that the ability to associate with CK2 subunits and to serve as a CK2 substrate are confined to different regions in eIF2beta and that it may act as an inhibitor on CK2alpha.


Subject(s)
Eukaryotic Initiation Factor-2B/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Blotting, Far-Western , Calmodulin/metabolism , Casein Kinase II , Caseins/metabolism , Cell Line , HeLa Cells , Humans , Kinetics , Molecular Sequence Data , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Subunits/metabolism , Recombinant Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...