Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29928668

ABSTRACT

Mesenteric adipose tissue hyperplasia is a hallmark of Crohn's disease (CD). Recently, we showed that mesenteric adipose-derived stromal cells (ADSCs) from CD, ulcerative colitis, and control patients synthesize and release adipokines in a disease-dependent manner. Here we examined the expression profiles of CD and control patient-derived mesenteric ADSCs and studied the effects of their extracellular mediators on colonocyte signaling in vitro and experimental colitis in vivo. ADSCs were isolated from mesenteric fat of control and CD patients. Microarray profiling and network analysis were performed in ADSCs and human colonocytes treated with conditioned media from cultured ADSCs. Mice with acute colitis received daily injections of conditioned media from patient-derived ADSCs, vehicle, or apolactoferrin. Proliferative responses were evaluated in conditioned media-treated colonocytes and mouse colonic epithelium. Total protein was isolated from cultured colonocytes after treatment with apolactoferrin for Western blot analysis of phosphorylated intracellular signaling kinases. Microarray profiling revealed differential mRNA expression in CD patient-derived ADSCs compared with controls, including lactoferrin. Administration of CD patient-derived medium or apolactoferrin increased colonocyte proliferation compared with controls. Conditioned media from CD patient-derived ADSCs or apolactoferrin attenuated colitis severity in mice and enhanced colonocyte proliferation in vivo. ADSCs from control and CD patients show disease-dependent inflammatory responses and alter colonic epithelial cell signaling in vitro and in vivo. Furthermore, we demonstrate lactoferrin production by adipose tissue, specifically mesenteric ADSCs. We suggest that mesenteric ADSC-derived lactoferrin may mediate protective effects and participate in the pathophysiology of CD by promoting colonocyte proliferation and the resolution of inflammation.

2.
Am J Pathol ; 186(1): 134-44, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26597886

ABSTRACT

The corticotropin-releasing hormone family mediates functional responses in many organs, including the intestine. Activation of corticotropin-releasing hormone receptor 2 (CRHR2) in the colonic mucosa promotes inflammation during acute colitis but inhibits inflammation during chronic colitis. We hypothesized that specific modulation of CRHR2 signaling in the colonic mucosa can promote restoration of the epithelium through stimulation of cell proliferative, migratory, and wound healing responses. Mucosal repair was assessed after dextran sodium sulfate (DSS)-induced colitis in mice receiving intracolonic injections of a CRHR2 antagonist or vehicle and in Crhr2(-/-) mice. Histologic damage, cytokine expression, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, and Ki-67 immunoreactivity were evaluated. Cell viability, proliferation, and migration were compared between parental and CRHR2-overexpressing colonic epithelial cells. Protein lysates were processed for phosphoprotein assays and a wound healing assay performed in vitro. Administration of a CRHR2 antagonist after DSS-induced colitis increased disease activity, delayed healing, and decreased epithelial cell proliferation in vivo. Colons from these mice also showed increased apoptosis and proinflammatory cytokine expression. Compared with controls, Crhr2(-/-) mice showed increased mortality in the DSS healing protocol. CRHR2-overexpressing cells had increased proliferation and migration compared with parental cells. Wound healing and signal transducer and activator of transcription 3 activity were elevated in CRHR2-overexpressing cells after urocortin 2 and IL-6 treatment, suggesting advanced healing progression. Our results suggest that selective CRHR2 activation may provide a targeted approach to enhance mucosal repair pathways after colitis.


Subject(s)
Colitis/metabolism , Colitis/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Receptors, Corticotropin-Releasing Hormone/metabolism , Signal Transduction , Animals , Blotting, Western , Cell Line , Disease Models, Animal , Gene Knockdown Techniques , Humans , Immunoassay , Immunohistochemistry , Male , Mice , Mice, Inbred ICR , Mice, Knockout , Real-Time Polymerase Chain Reaction , Receptors, Corticotropin-Releasing Hormone/deficiency , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...