Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 109(30): 14551-6, 2005 Aug 04.
Article in English | MEDLINE | ID: mdl-16852834

ABSTRACT

The evolution of photochemical surfactant removal and silica condensation from organically templated thin film silica nanocomposites with mesoscopic ordering has been probed using a combined application of Fourier transform infrared (FT-IR) spectroscopy and single wavelength ellipsometry. Thin films of silica nanocomposites were prepared by a previously reported evaporation-induced self-assembly process. Specifically, oxidized silicon and gold substrates were withdrawn at 25 mm/min from a subcritical micelle concentration solution containing an ethylene oxide surfactant as a structure-directing agent and tetraethyl orthosilicate as a silica precursor. Real-time grazing incidence difference FT-IR spectra of the nanocomposite films on gold taken during exposure to short-wavelength ultraviolet light (184-257 nm) show that surfactant removal and silica condensation occur gradually and concomitantly. Surfactant removal and silica reconstructions were found to be nearly complete after 90 min of exposure. Further, a transient feature was observed in the FT-IR spectra around 1713 cm(-1) during the UV exposure process and was assigned to a carbonyl (C=O) stretching mode absorption, reflecting the transient formation of a partially oxidized surfactant intermediate. From these data we propose a stepwise model for surfactant removal from the nanocomposite films. Ellipsometrically determined index of refraction values collected as a function of UV exposure are also shown to support such a stepwise mechanism of surfactant removal from the ordered nanocomposite silica thin film mesophases studied here.


Subject(s)
Silicon Dioxide/chemistry , Surface-Active Agents/chemistry , Carbon/chemistry , Hydrogen/chemistry , Photochemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...