Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
J Surg Res ; 298: 109-118, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603941

ABSTRACT

INTRODUCTION: Brain death (BD) compromises the viability of the lung for donation. Hypertonic saline solution (HSS) induces rapid intravascular volume expansion and immunomodulatory action. We investigated its role in ventilatory mechanics (VMs) and in the inflammatory activity of the lungs of rats subjected to BD. METHODS: Wistar rats were divided into four groups: control, n = 10: intact rats subjected to extraction of the heart-lung block; BD, n = 8 (BD): rats treated with isotonic saline solution (4 mL/kg) immediately after BD; hypertonic saline 0 h, n = 9 (Hip.0'): rats treated with HSS (4 mL/kg) immediately after BD; and hypertonic saline 1 h, n = 9 (Hip.60'), rats treated with HSS (4 mL/kg) 60 min after BD. The hemodynamic characteristics, gas exchange, VMs, inflammatory mediators, and histopathological evaluation of the lung were evaluated over 240 min of BD. RESULTS: In VMs, we observed increased airway resistance, tissue resistance, tissue elastance, and respiratory system compliance in the BD group (P < 0.037), while the treated groups showed no impairment over time (P > 0.05). In the histological analysis, the BD group showed a greater area of perivascular edema and a higher neutrophil count than the control group and the Hip.60' group (P < 0.05). CONCLUSIONS: Treatment with HSS was effective in preventing changes in the elastic and resistive pulmonary components, keeping them at baseline levels. Late treatment reduced perivascular and neutrophilic edema in lung tissue.


Subject(s)
Brain Death , Lung , Rats, Wistar , Animals , Brain Death/physiopathology , Saline Solution, Hypertonic/pharmacology , Lung/drug effects , Lung/pathology , Male , Rats , Respiratory Mechanics/drug effects , Lung Transplantation
2.
Sci Rep ; 13(1): 10524, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386074

ABSTRACT

Liver transplantation has come a long way and is now regarded as the gold standard treatment for end-stage liver failure. The great majority of livers utilized in transplantation come from brain-dead donors. A broad inflammatory response characterizes BD, resulting in multiorgan damage. This process is primarily mediated by cytokines, which increase the immunogenicity of the graft. In male Lewis rats, we evaluated the immune response in a BD liver donor and compared it to that of a control group. We studied two groups: Control and BD (rats subjected to BD by increasing intracranial pressure). After the induction of BD, there was an intense rise in blood pressure followed by a fall. There were no significant differences observed between the groups. Blood tissue and hepatic tissue analyzes showed an increase in plasma concentrations of liver enzymes (AST, ALT, LDH and ALP), in addition to pro-inflammatory cytokines and macrophages in liver tissue in animals submitted to BD. The current study found that BD is a multifaceted process that elicits both a systemic immune response and a local inflammatory response in liver tissue. Our findings strongly suggested that the immunogenicity of plasma and liver increased with time following BD.


Subject(s)
Brain Death , End Stage Liver Disease , Male , Animals , Rats , Rats, Inbred Lew , Cytokines , Models, Theoretical
3.
Transpl Immunol ; 75: 101710, 2022 12.
Article in English | MEDLINE | ID: mdl-36096418

ABSTRACT

BACKGROUND: Brain death (BD) is characterized by a complex inflammatory response, resulting in dysfunction of potentially transplantable organs. This process is modulated by cytokines, which amplify graft immunogenicity. We have investigated the inflammatory response in an animal model of BD and analyzed the effects of thalidomide, a drug with powerful immunomodulatory properties. METHODS: BD was induced in male Lewis rats. We studied three groups: Control (sham-operated rats) (n = 6), BD (rats subjected to brain death) (n = 6) and BD + Thalid (BD rats treated with one dose of thalidomide (200 mg/Kg), administered by gavage) (n = 6). Six hours after BD, serum levels of urea and creatinine, as well as systemic and renal tissue protein levels of TNF-α and IL-6, were analyzed. We also determined the mRNA expression of ET-1, and macrophage infiltration by immunohistochemistry. RESULTS: BD induced a striking inflammatory status, demonstrated by a significant increase of plasma cytokines: TNF-α (2.8 ± 4.3 pg/mL [BD] vs. 9.4 ± 2.8 pg/mL [Control]), and IL-6 (6219.5 ± 1380.6 pg/mL [BD] vs. 1854.7 ± 822.6 pg/mL [Control]), and in the renal tissue: TNF-α (2.5 ± 0.3 relative expression [BD] vs. 1.0 ± 0.4 relative expression [Control]; p < 0.05), and IL-6 (4.0 ± 0.4 relative expression [BD] vs. 1.0 ± 0.3 relative expression [Control]; p < 0.05). Moreover, BD increased macrophages infiltration (2.47 ± 0.07 cells/field [BD] vs. 1.20 ± 0.05 cells/field [Control]; p < 0.05), and ET-1 gene expression (2.5 ± 0.3 relative expression [BD] vs. 1.0 ± 0.2 relative expression [Control]; p < 0.05). In addition, we have observed deterioration in renal function, characterized by an increase of urea (194.7 ± 25.0 mg/dL [BD] vs. 108.0 ± 14.2 mg/dL [Control]; p < 0.05) and creatinine (1.4 ± 0.04 mg/dL [BD] vs. 1.0 ± 0.07 mg/dL [Control]; p < 0.05) levels. Thalidomide administration significantly reduced plasma cytokines: TNF-α (5.1 ± 1.4 pg/mL [BD + Thalid] vs. BD; p < 0.05), and IL-6 (1056.5 ± 488.3 pg/mL [BD + Thalid] vs. BD; p < 0.05), as well as in the renal tissue: TNF-α (1.5 ± 0.2 relative expression [BD + Thalid] vs. BD; p < 0.05), and IL-6 (2.1 ± 0.3 relative expression [BD + Thalid] vs. BD; p < 0.05). Thalidomide treatment also induced a significant decrease in the expression of ET-1 (1.4 ± 0.3 relative expression [BD + Thalid] vs. BD; p < 0.05), and macrophages infiltration (1.17 ± 0.06 cells/field [BD + Thalid] vs. BD; p < 0.05). Also thalidomide prevented kidney function failure by reduced urea (148.3 ± 4.4 mg/dL [BD + Thalid] vs. BD; p < 0.05), and creatinine (1.1 ± 0.14 mg/dL [BD + Thalid] vs. BD; p < 0.05). CONCLUSIONS: The immunomodulatory properties of thalidomide were effective in decreasing systemic and local immunologic response, leading to diminished renal damage, as reflected in the decrease of urea and creatinine levels. These results suggest that use of thalidomide may represent a potential strategy for treating in BD kidney organ donors.


Subject(s)
Brain Death , Thalidomide , Rats , Male , Animals , Thalidomide/therapeutic use , Thalidomide/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Creatinine , Interleukin-6 , Rats, Inbred Lew , Cytokines/metabolism , Disease Models, Animal , Inflammation/drug therapy , Urea
4.
Sci Rep ; 11(1): 19221, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584130

ABSTRACT

Brain death is characterized by a generalized inflammatory response that results in multiorgan damage. This process is mainly mediated through cytokines, which amplify graft immunogenicity. We investigated the immunological response in a brain death liver donor model and analysed the effects of thalidomide, a drug with powerful immunomodulatory properties. Brain death was induced in male Lewis rats. We studied three groups: Control (sham-operated rats in which trepanation was performed without inserting the balloon catheter), BD (rats subjected to brain death by increasing intracranial pressure) and BD + Thalid (BD rats receiving thalidomide after brain death). After 6 h, serum levels of AST, ALT, LDH, and ALP as well as systemic and hepatic levels of TNF-α, IL1-ß, IL-6, and IL-10 were analysed. We also determined the mRNA expression of MHC Class I and Class II, NF-κB, and macrophage infiltration. NF-κB was also examined by electrophoretic mobility shift assay. Thalidomide treatment significantly reduced serum levels of hepatic enzymes and TNF-α, IL-1-ß, and IL-6. These cytokines were evaluated at either the mRNA expression or protein level in liver tissue. In addition, thalidomide administration resulted in a significant reduction in macrophages, MHC Class I and Class II, and NF-κB activation. This study reveals that thalidomide significantly inhibited the immunologic response and graft immunogenicity, possibly through suppression of NF-κB activation.


Subject(s)
Brain Death/immunology , Graft Rejection/prevention & control , Liver Transplantation/adverse effects , Thalidomide/administration & dosage , Tissue and Organ Harvesting/methods , Allografts/drug effects , Allografts/immunology , Animals , Disease Models, Animal , Graft Rejection/immunology , Humans , Liver/drug effects , Liver/immunology , Liver Transplantation/methods , Male , Rats , Rats, Inbred Lew
5.
J Bras Pneumol ; 47(4): e20200452, 2021.
Article in English, Portuguese | MEDLINE | ID: mdl-34378644

ABSTRACT

OBJECTIVE: The shortage of viable lungs is still a major obstacle for transplantation. Trauma victims who represent potential lung donors commonly present hypovolemic shock leading to pulmonary inflammation and deterioration and rejection after transplantation. Seeking to improve lung graft, new approaches to donor treatment have been tested. This study focuses on treatment with mesenchymal stem cells (MSCs) or soluble factors produced by MSCs (FS-MSC) using a rat model for lung donors after hemorrhagic shock. METHODS: Forty-eight rats were divided into four groups: Sham (n=12), animals without induction of hypovolemic shock; Shock (n=12), animals submitted to hypovolemic shock (mean arterial pressure 40 mmHg); MSC (n=12), animals submitted to hypovolemic shock and treated with MSCs, and FS (n=12), animals submitted to hypovolemic shock and treated with FS-MSC. The animals were subjected to a 50-minute hypovolemic shock (40 mmHg) procedure. The treated animals were monitored for 115 minutes. We performed histopathology of lung tissue and quantification of inflammatory markers (TNF-α, IL-1ß, IL-6, IL-10, iCAM and vCAM) in lung tissue and peripheral blood leukocytes (PBLs). RESULTS: Hemorrhagic shock resulted in higher PBLs and neutrophil infiltrate in the lungs. FS animals had lower neutrophil density comparing with Shock and MSC animals (p<0.001). No differences in the cytokine levels in lung tissue were observed between the groups. CONCLUSIONS: The lungs of rats submitted to hemorrhagic shock and treated with FS-MSC showed reduced inflammation indicated in a decrease in lung neutrophil infiltrate.


OBJETIVO: A escassez de pulmões viáveis ainda é um grande obstáculo para o transplante. As vítimas de trauma, que constituem potenciais doadores de pulmão, comumente apresentam choque hipovolêmico que acarreta inflamação e deterioração pulmonar e rejeição após o transplante. Buscando melhorar o enxerto pulmonar, testaram-se novas abordagens ao tratamento do doador. Este estudo foca o tratamento com células-tronco mesenquimais (CTMs) ou fatores solúveis produzidos pelas CTMs (FS-CTMs), usando um modelo com ratos para doadores de pulmão após choque hemorrágico. MÉTODOS: Quarenta e oito ratos foram divididos em quatro grupos: Controle (n=12), animais sem indução de choque hipovolêmico; Choque (n=12), animais submetidos a choque hipovolêmico (pressão arterial média de 40 mmHg); CTM (n=12), animais submetidos a choque hipovolêmico e tratados com CTMs; e FS (n=12), animais submetidos a choque hipovolêmico e tratados com FS-CTMs. Os animais foram submetidos a um procedimento de choque hipovolêmico (40 mmHg) com 50 minutos de duração. Os animais tratados foram monitorados por 115 minutos. Realizamos análise histopatológica do tecido pulmonar e quantificação dos marcadores inflamatórios (TNF-α, IL-1ß, IL-6, IL-10, iCAM e vCAM) no tecido pulmonar e leucócitos no sangue periférico (LSPs). RESULTADOS: O choque hemorrágico resultou em taxas mais altas de LSPs e infiltrado de neutrófilos nos pulmões. Os animais do grupo FS apresentaram menor densidade de neutrófilos em comparação com os animais dos grupos Choque e CTM (p<0,001). Não foram observadas diferenças entre os grupos quanto aos níveis de citocinas no tecido pulmonar. CONCLUSÃO: Os pulmões dos ratos submetidos a choque hemorrágico e tratados com FS-CTM apresentaram inflamação reduzida indicada por uma diminuição do infiltrado de neutrófilos nos pulmões.


Subject(s)
Lung Transplantation , Mesenchymal Stem Cells , Shock, Hemorrhagic , Animals , Disease Models, Animal , Inflammation , Lung , Rats , Shock, Hemorrhagic/therapy
6.
J Surg Res ; 225: 181-188, 2018 05.
Article in English | MEDLINE | ID: mdl-29605030

ABSTRACT

BACKGROUND: Hemorrhagic shock-induced lung edema and inflammation are two of the main reasons for the rejection of lungs donated for transplantation. Hypertonic saline (HS) induces intravascular volume expansion and has considerable immunomodulating effects that might minimize edema. Our hypothesis is based on the use of a hypertonic solution for treatment of donors who are in shock in an attempt to increase the supply of lungs for transplantation. METHODS: A total of 80 rats were allocated to four groups: one group was given an infusion of normal saline (NS; n = 20), one group received HS; n = 20, a sham group (n = 20), and a Shock group (n = 20). Half of the lungs from each group were evaluated in an ex vivo perfusion system, and the other half was used for measurements of cytokine levels and neutrophil counts. RESULTS: In the ex vivo perfusion assessment, the pulmonary artery pressures of the animals in the NS and HS groups did not exhibit significant differences compared with those in the sham group (P > 0.05) but were lower than those in the Shock group (P < 0.01). Furthermore, the tumor necrosis factor-α levels and neutrophil counts were lower in the HS group than those in the Shock group (P < 0.01) and did not exhibit significant differences compared with those in either the NS and Sham groups (P > 0.05). CONCLUSIONS: We showed that HS was equivalent to isotonic saline and contributed to the treatment of lungs subjected to hemorrhagic shock.


Subject(s)
Edema/prevention & control , Organ Preservation/methods , Saline Solution, Hypertonic/administration & dosage , Shock, Hemorrhagic/complications , Tissue and Organ Harvesting/methods , Animals , Disease Models, Animal , Edema/etiology , Edema/pathology , Lung/pathology , Lung Transplantation , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...