Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Life (Basel) ; 13(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37629489

ABSTRACT

Cancer multidrug resistance (MDR) is one of the main mechanisms contributing to therapy failure and mortality. Overexpression of drug transporters of the ABC family (ATP-binding cassette) is a major cause of MDR. Extracellular vesicles (EVs) are nanoparticles released by most cells of the organism involved in cell-cell communication. Their cargo mainly comprises, proteins, nucleic acids, and lipids, which are transferred from a donor cell to a target cell and lead to phenotypical changes. In this article, we review the scientific evidence addressing the regulation of ABC transporters by EV-mediated cell-cell communication. MDR transfer from drug-resistant to drug-sensitive cells has been identified in several tumor entities. This was attributed, in some cases, to the direct shuttle of transporter molecules or its coding mRNA between cells. Also, EV-mediated transport of regulatory proteins (e.g., transcription factors) and noncoding RNAs have been indicated to induce MDR. Conversely, the transfer of a drug-sensitive phenotype via EVs has also been reported. Additionally, interactions between non-tumor cells and the tumor cells with an impact on MDR are presented. Finally, we highlight uninvestigated aspects and possible approaches to exploiting this knowledge toward the identification of druggable processes and molecules and, ultimately, the development of novel therapeutic strategies.

2.
Toxicol Appl Pharmacol ; 426: 115636, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34214573

ABSTRACT

Paraquat (PQ), an herbicide widely used in agriculture, is considered a highly toxic compound. In hepatocytes, P-glycoprotein (P-gp/Abcb1) is a canalicular transporter involved in PQ extrusion from the cell. Previously, we demonstrated that genistein (GNT) induces P-gp in rat liver. In this study, the protective role of GNT pretreatment towards hepatic damage in a model of acute intoxication with PQ in rats, was investigated. Wistar rats were randomized in 4 groups: Control, GNT (5 mg/kg/day sc, 4 days), PQ (50 mg/kg/day ip, last day) and GNT+ PQ. Hepatic lipoperoxidation (LPO) was evaluated by the thiobarbituric acid reactive substances method. Hepatic levels of 4-hydroxynonenal protein adducts (4-HNEp-add) and glutathione-S-transferase alpha (GSTα) protein expression were evaluated by Western blotting. Hepatic glutathione levels and plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Biliary excretion of PQ was studied in vivo and in isolated perfused liver. PQ was quantified by HPLC. PQ significantly increased AST and ALT activities, malondialdehyde and 4-HNEp-add levels, whereby pretreatment with GNT ameliorated this effect. PQ biliary excretion remained unchanged after treatments in both experimental models. Hepatic GSTα expression was augmented in GNT group. GNT pretreatment increased hepatic glutathione levels in PQ + GNT group. These results agree with the lower content of 4-HNEp-adds in GNT + PQ group respect to PQ group. Unexpectedly, increased activity of P-gp did not enhance PQ biliary excretion. Thus, GNT protective mechanism is likely through the induction of GSTα which results in increased 4-HNE metabolism before formation of protein adducts.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Genistein/therapeutic use , Protective Agents/therapeutic use , Alanine Transaminase/blood , Aldehydes/metabolism , Animals , Aspartate Aminotransferases/blood , Bile/metabolism , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/metabolism , Genistein/pharmacology , Glutathione/metabolism , Glutathione Transferase/metabolism , Herbicides , Liver/drug effects , Liver/metabolism , Male , Paraquat , Protective Agents/pharmacology , Rats, Wistar
3.
Life Sci ; 259: 118352, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32860804

ABSTRACT

AIMS: Lipopolysaccharide (LPS) induces inflammatory cholestasis by impairing expression, localization, and function of carriers involved in bile formation, e.g. bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). A specific therapy against this disease is still lacking. Therefore, we evaluated the anticholestatic effects of spironolactone (SL), a PXR ligand that regulates bile salt homeostasis, up-regulates Mrp2, and bears anti-inflammatory properties. MAIN METHODS: Male Wistar rats were divided into four groups: Control, SL (83.3 mg/kg/day of SL, i.p., for 3 days), LPS (2.5 mg/kg/day, i.p., at 8 am of the last 2 days, and 1.5 mg/kg/day at 8 pm of the last day), and SL + LPS. Biliary and plasma parameters and the expression, function, and localization of Mrp2 and Bsep were evaluated. KEY FINDINGS: SL partially prevented LPS-induced drop of basal bile flow by normalizing the bile salt-independent fraction of bile flow (BSIBF), via improvement of glutathione output. This was due to a recovery in Mrp2 transport function, the major canalicular glutathione transporter, estimated by monitoring the output of its exogenously administered substrate dibromosulfophthalein. SL counteracted the LPS-induced downregulation of Mrp2, but not that of Bsep, at both mRNA and protein levels. LPS induced endocytic internalization of both transporters, visualized by immunofluorescence followed by confocal microscopy, and SL partially prevented this relocalization. SL did not prevent the increase in IL-1ß, IL-6, and TNF-α plasma levels. SIGNIFICANCE: SL prevents the impairment in Mrp2 expression and localization, and the resulting recovery of Mrp2 function normalizes the BSIBF by improving glutathione excretion.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cholestasis/drug therapy , Spironolactone/therapeutic use , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Animals , Bile/metabolism , Cholestasis/blood , Cholestasis/metabolism , Cytokines/blood , Gene Expression Regulation/drug effects , Lipopolysaccharides/adverse effects , Male , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
4.
Arch Toxicol ; 94(5): 1625-1635, 2020 05.
Article in English | MEDLINE | ID: mdl-32185415

ABSTRACT

P-glycoprotein (P-gp) is an ABC transporter exhibiting high pharmacotoxicological relevance by extruding a wide range of cytotoxic compounds out of the cells. Previously, we demonstrated that the phytoestrogen genistein (GNT) modulates P-gp expression in hepatocellular carcinoma in vitro. Although several beneficial effects (e.g., antioxidant, antimutagenic, anticancer) have been attributed to GNT, the molecular mechanisms have not been totally elucidated. In the present work, we evaluated the effect of GNT on P-gp expression in rat liver, kidney and ileum. We found that GNT (5 mg/kg daily s.c. 3 days) increased hepatic P-gp expression and also Mdr1a (one of the genes encoding P-gp) mRNA levels. Renal and intestinal P-gp remained unchanged after GNT treatment. Hepatic P-gp activity measured with rhodamine-123 and digoxin, both well-known P-gp substrates, was also increased. In vitro experiments using hepatocyte primary cell culture demonstrated that inhibition of ER-α with ICI182/780 did not prevent Mdr1a mRNA up-regulation by GNT (10 µM). In contrast, Mdr1a induction was suppressed after pregnane X receptor (PXR) inhibition by sulforaphane and knockdown of this nuclear receptor. These findings were confirmed in vivo by using the PXR antagonist ketoconazole. In conclusion, we demonstrated the induction of hepatic P-gp expression and activity by GNT in vivo, with PXR being a likely mediator. This suggests that GNT, at concentrations observed in plasma of individuals consuming the phytoestrogen in the diet or through supplements, could affect the clearance of relevant P-gp substrates of therapeutic use as well as toxicity of environmental and food toxicants.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Anticarcinogenic Agents/toxicity , Genistein/toxicity , ATP-Binding Cassette Transporters/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Liver/metabolism , Liver Neoplasms/metabolism , Male , RNA, Messenger/metabolism , Rats
5.
Biochem Pharmacol ; 168: 48-56, 2019 10.
Article in English | MEDLINE | ID: mdl-31202734

ABSTRACT

Lipopolysaccharide (LPS) from Gram (-) bacteria induces inflammatory cholestasis by impairing the expression/localization of transporters involved in bile formation (e.g., Bsep, Mrp2). Therapeutic options for this disease are lacking. Ursodeoxycholic acid (UDCA) is the first choice therapy in cholestasis, but its anticholestatic efficacy in this hepatopathy remains to be evaluated. To asses it, male Wistar rats received UDCA for 5 days (25 mg/Kg/day, i.p.) with or without LPS, administered at 8 a.m. of the last 2 days (4 mg/Kg/day, i.p.), plus half of this dose at 8 p.m. of the last day. Then, plasma alkaline phosphatase (ALP), bile flow, basal and taurocholate-stimulated bile acid output, total glutathione output, and total/plasma membrane liver protein expression of Bsep and Mrp2 by confocal microscopy were assessed. mRNA levels of both transporters were assessed by Real-Time PCR. Plasma pro-inflammatory cytokines (IL-6 and TNF-α) were measured by ELISA. Our results showed that UDCA attenuated LPS-induced ALP plasma release and the impairment in the excretion of the Bsep substrate, taurocholate. This was associated with an improved Bsep expression at both mRNA and protein levels, and by an improved localization of Bsep in plasma membrane. UDCA failed to reduce the increase in plasma pro-inflammatory cytokines induced by LPS and Mrp2 expression/function. In conclusion, UDCA protects the hepatocyte against the damaging effect of bile acids accumulated by the LPS-induced secretory failure. This involved an enhanced synthesis of Bsep and an improved membrane stability of the newly synthesized transporters.


Subject(s)
Cholagogues and Choleretics/therapeutic use , Cholestasis/chemically induced , Cholestasis/drug therapy , Lipopolysaccharides/pharmacology , Ursodeoxycholic Acid/therapeutic use , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , ATP-Binding Cassette Transporters/metabolism , Alkaline Phosphatase/blood , Animals , Bile Acids and Salts/metabolism , Cholagogues and Choleretics/administration & dosage , Cholagogues and Choleretics/pharmacology , Disease Models, Animal , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/metabolism , Male , Rats , Rats, Wistar , Treatment Outcome , Ursodeoxycholic Acid/administration & dosage , Ursodeoxycholic Acid/pharmacology
6.
J Nutr Biochem ; 68: 7-15, 2019 06.
Article in English | MEDLINE | ID: mdl-31005848

ABSTRACT

Intestinal multidrug resistance-associated protein 2 is an ABC transporter that limits the absorption of xenobiotics ingested orally, thus acting as essential component of the intestinal biochemical barrier. Metabolic Syndrome (MetS) is a pathological condition characterized by dyslipidemia, hyperinsulinemia, insulin resistance, chronic inflammation, and oxidative stress (OS). In a previous study we demonstrated that MetS-like conditions induced by fructose in drinking water (10% v/v, during 21 days), significantly reduced the expression and activity of intestinal Mrp2 in rats. We here evaluated the potential beneficial effect of geraniol or vitamin C supplementation, natural compounds with anti-inflammatory and anti-oxidant properties, in reverse fructose-induced Mrp2 alterations. After MetS-like conditions were induced (21 days), animals were cotreated with geraniol or vitamin C or vehicle for another 14 days. Decreased expression of Mrp2 protein and mRNA due to fructose administration was reversed by geraniol and by vitamin C, consistent with restoration of Mrp2 activity evaluated in everted intestinal sacs. Concomitantly, increased intestinal IL-1ß and IL-6 levels induced by fructose were totally and partially counterbalanced, respectively, by geraniol administration. The intestinal redox unbalance generated by fructose was improved by geraniol and vitamin C, as evidenced by decreasing lipid peroxidation products and activity of Superoxide Dismutase and by normalizing glutathione reduced/oxidized glutathione ratio. The restoration effects exhibited by geraniol and vitamin C suggest that local inflammatory response and OS generated under MetS-like conditions represent important mediators of the intestinal Mrp2 down-regulation. Additionally, both agents could be considered of potential therapeutic value to preserve Mrp2 function under MetS conditions.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Acyclic Monoterpenes/pharmacology , Ascorbic Acid/pharmacology , Fructose/adverse effects , Intestinal Mucosa/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Body Weight/drug effects , Down-Regulation/drug effects , Eating/drug effects , Glucose/metabolism , Inflammation , Insulin Resistance , Intestinal Mucosa/metabolism , Male , Oxidative Stress/drug effects , Rats, Wistar , Triglycerides/blood
7.
Biochem Pharmacol ; 164: 311-320, 2019 06.
Article in English | MEDLINE | ID: mdl-31026445

ABSTRACT

TNFα is a cytokine whose levels are increased in inflammatory pathologies that are associated with cholestasis. Endocytic internalization of Abcc2 (multidrug resistance-associated protein 2), a canalicular transporter of organic anions that is implicated in the clearance of clinically important drugs, is a phenomenon that occurs in inflammatory liver diseases, and it has been established that cytokines act as mediators. However, the intracellular mechanism involved in this effect remains unknown. The aim of the present work was to characterize the internalization of Abcc2 induced by TNFα and to study the role of ERK1/2 and reactive oxygen species as signaling mediators of transporter internalization. Using rat hepatocyte couplets, we found that TNFα (6.25 pg/ml) induced a decrease in Abcc2 activity estimated by the accumulation of the Abcc2 substrate glutathione methylfluorescein in the canalicular vacuole that was accompanied by internalization of Abcc2 from the canalicular membrane. Inhibition of MEK1/2 (upstream of ERK1/2) partially prevented TNFα effects on Abcc2 internalization and activity impairment. Reactive oxygen species (ROS) scavengers such as vitamin C and mannitol partially prevented both TNFα-induced decrease in Abcc2 activity and ERK1/2 phosphorylation. Apocynin, a NADPH oxidase inhibitor, prevented the increase in ROS and the phosphorylation of ERK1/2 produced by TNFα. Taken together, these results indicate that TNFα activates a pathway involving NADPH oxidase, ROS and MEK1/2-ERK1/2 that is partially responsible for the internalization of Abcc2. This internalization leads to an altered transport activity of Abcc2 that could impair drug disposal, enhancing drug toxicity in patients suffering from inflammatory liver diseases.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Hepatocytes/metabolism , MAP Kinase Signaling System/physiology , Tumor Necrosis Factor-alpha/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Hepatocytes/drug effects , MAP Kinase Signaling System/drug effects , Rats , Rats, Wistar
8.
Curr Med Chem ; 26(7): 1224-1250, 2019.
Article in English | MEDLINE | ID: mdl-29303075

ABSTRACT

For most cancers, the treatment of choice is still chemotherapy despite its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to the overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Carcinoma, Hepatocellular/metabolism , Colorectal Neoplasms/metabolism , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Liver Neoplasms/metabolism , Humans , Multidrug Resistance-Associated Protein 2
9.
Eur J Nutr ; 58(1): 139-150, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29101532

ABSTRACT

PURPOSE: The soy isoflavone genistein has been described to up-regulate breast cancer resistance protein (BCRP) and, thus, enhance chemoresistance in breast cancer cells. The aim of this work was to assess the effect of long- and short-term incubation with daidzein, the second most abundant soy isoflavone and its metabolite equol on the expression and activity of P-glycoprotein, multidrug resistance-associated proteins 1 and 2 (MRP1 and MRP2) and BCRP in breast cancer cells. METHODS: MCF-7 and MDA-MB-231 cells were treated with phytoestrogen concentrations within the range achieved in individuals with a high isoflavone intake. Transporter expression was evaluated at protein and mRNA level through western blot and qRT-PCR, respectively. Transporter activity was determined using doxorubicin, mitoxantrone and carboxy-dichlorofluorescein as substrates. RESULTS: Daidzein (5 µM) up-regulated MRP2- and down-regulated MRP1 protein expressions in MCF-7 and MDA-MB-231 cells, respectively. Both effects were ER-dependent, as determined using the antagonist ICI 182,780. The decrease in MRP1 mRNA in MDA-MB-231 cells indicates a transcriptional mechanism. On the contrary, MRP2 induction in MCF-7 cells takes place post-transcriptionally. Whereas changes in the transporter expression had a minor effect on the transporter activity, acute incubation with daidzein, R-equol and S-equol led to a strong inhibition of BCRP activity and an increase in the IC50 of BCRP substrates. CONCLUSIONS: In contrast to previous reports for genistein, daidzein and equol do not provoke a major up-regulation of the transporter expression but instead an inhibition of BCRP activity and sensitization to BCRP substrates.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/drug effects , Breast Neoplasms/metabolism , Equol/pharmacology , Isoflavones/pharmacology , Neoplasm Proteins/drug effects , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Blotting, Western , Breast Neoplasms/genetics , Cell Line, Tumor , Down-Regulation/drug effects , Equol/metabolism , Humans , Isoflavones/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phytoestrogens/metabolism , Phytoestrogens/pharmacology , Polymerase Chain Reaction , Up-Regulation/drug effects
10.
Eur J Pharm Sci ; 122: 205-213, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29981893

ABSTRACT

Multidrug resistance-associated protein 2 (MRP2) plays a key role in hepatic and intestinal disposition of endo- and xenobiotics. Several therapeutic agents modulate MRP2 activity resulting in pharmacological interactions. Nomegestrol acetate (NMGA) is a progestogen increasingly used in contraceptive formulations. The aim of this work was to evaluate the effect of NMGA on MRP2 activity in HepG2 and Caco-2 cells as models of human hepatocytes and enterocytes, respectively. NMGA (5, 50 and 500 nM; 48 h) decreased MRP2-mediated transport of 2,4-dinitrophenyl-S-glutathione in HepG2 cells, with no effect on MRP2 protein expression. Acute exposure (1 h) to the same concentrations of NMGA failed to affect MRP2 activity, ruling out an inhibitory action directly induced by the drug. In contrast, acute incubation with a lysate of HepG2 cells pre-treated with NMGA, containing potential metabolites, reproduced MRP2 inhibition. Preincubation of lysates with sulfatase but not with ß-glucuronidase abolished the inhibitory action, strongly suggesting participation of NMGA sulfated derivatives. Western blot studies in plasma vs. intracellular membrane fractions ruled out internalization of MRP2 to be responsible for the impairment of transport activity. MRP2-mediated transport of 5(6)-carboxy-2',7'-dichlorofluorescein was not affected in Caco-2 cells incubated for 48 h with either 5, 50 or 500 nM NMGA. Conversely, acute exposure (1 h) of Caco-2 cells to NMGA-treated HepG2 lysates decreased MRP2 activity, being this effect also prevented by pre-treatment of the lysates with sulfatase. Taken together, these findings demonstrate an inhibitory effect of NMGA sulfated metabolites on hepatic and intestinal MRP2 function. Extrapolated to the in vivo situation, they suggest the possibility of pharmacological interactions with coadministered drugs.


Subject(s)
Contraceptive Agents/pharmacology , Megestrol/pharmacology , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Norpregnadienes/pharmacology , Caco-2 Cells , Cell Survival/drug effects , Hep G2 Cells , Humans , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism
11.
Biochem Pharmacol ; 154: 118-126, 2018 08.
Article in English | MEDLINE | ID: mdl-29684377

ABSTRACT

ABC transporters are key players in drug excretion with alterations in their expression and activity by therapeutic agents potentially leading to drug-drug interactions. The interaction potential of nomegestrol acetate (NMGA), a synthetic progestogen increasingly used as oral contraceptive, had never been explored. In this work we evaluated (1) the effect of NMGA on ABC transporters in the human hepatic cell line HepG2 and (2) the underlying molecular mechanism. NMGA (5, 50 and 500 nM) increased P-glycoprotein (P-gp) expression at both protein and mRNA levels and reduced intracellular calcein accumulation, indicating an increase also in transporter activity. This up-regulation of P-gp was corroborated in Huh7 cells and was independent of the classical progesterone receptor. Instead, using a siRNA-mediated silencing approach, we demonstrated the involvement of membrane progesterone receptor α. Moreover, we found that the activation of this receptor by NMGA led to a falling-rising profile in intracellular cAMP levels and protein kinase A activity over time, ultimately leading to transcriptional P-gp up-regulation. Finally, we identified inhibitory G protein and phosphodiesterases as mediators of this novel biphasic modulation. These results demonstrate the ability of NMGA to selectively up-regulate hepatic P-gp expression and activity and constitute the first report of ABC transporter modulation by membrane progesterone receptor α. If a similar regulation took place in vivo, decreased bioavailability and therapeutic efficacy of NMGA-coadministered P-gp substrates could be expected. This holds special importance considering long-term administration of NMGA and broad substrate specificity of P-gp.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Contraceptive Agents/pharmacology , Cyclic AMP/metabolism , Hepatocytes/metabolism , Megestrol/pharmacology , Norpregnadienes/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/agonists , Cyclic AMP/antagonists & inhibitors , Dose-Response Relationship, Drug , Gene Expression , Hep G2 Cells , Hepatocytes/drug effects , Humans
12.
Arch Toxicol ; 92(2): 777-788, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29052767

ABSTRACT

Multidrug resistance-associated protein 2 (MRP2) is an ATP-dependent transporter expressed at the brush border membrane of the enterocyte that confers protection against absorption of toxicants from foods or bile. Acute, short-term regulation of intestinal MRP2 activity involving changes in its apical membrane localization was poorly explored. We evaluated the effects of dibutyryl-cAMP (db-cAMP), a permeable analog of cAMP, and estradiol-17ß-D-glucuronide (E217G), an endogenous derivative of estradiol, on MRP2 localization and activity using isolated rat intestinal sacs and Caco-2 cells, a model of human intestinal epithelium. Changes in MRP2 localization were studied by Western blotting of plasma membrane (PM) vs. intracellular membrane (IM) fractions in both experimental models, and additionally, by confocal microscopy in Caco-2 cells. After 30 min of exposure, db-cAMP-stimulated sorting of MRP2 from IM to PM both in rat jejunum and Caco-2 cells at 10 and 100 µM concentrations, respectively, with increased excretion of the model substrate 2,4-dinitrophenyl-S-glutathione. In contrast, E217G (400 µM) induced internalization of MRP2 together with impairment of transport activity. Confocal microscopy analysis performed in Caco-2 cells confirmed Western blot results. In the particular case of E217G, MRP2 exhibited an unusual pattern of staining compatible with endocytic vesiculation. Use of selective inhibitors demonstrated the participation of cAMP-dependent protein kinase and classic calcium-dependent protein kinase C in db-cAMP and E217G effects, respectively. We conclude that localization of MRP2 in intestine may be subjected to a dynamic equilibrium between plasma membrane and intracellular domains, thus allowing for rapid regulation of MRP2 function.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bucladesine/pharmacology , Estradiol/analogs & derivatives , Intestinal Mucosa/drug effects , Multidrug Resistance-Associated Proteins/metabolism , Animals , Caco-2 Cells , Cell Membrane/metabolism , Cyclic AMP , Estradiol/pharmacology , Humans , Intestinal Mucosa/metabolism , Male , Multidrug Resistance-Associated Protein 2 , Rats , Rats, Wistar
13.
J Nutr Biochem ; 40: 178-186, 2017 02.
Article in English | MEDLINE | ID: mdl-27915161

ABSTRACT

Expression and activity of jejunal multidrug resistance-associated protein 2 (Mrp2) and glutathione-S-transferase (GST) were examined in fructose fed Wistar rats, an experimental model of metabolic syndrome. Animals were fed on (a) control diet or (b) control diet plus 10% w/vol fructose in the drinking water. Mrp2 and the α class of GST proteins as well as their corresponding mRNAs were decreased, suggesting a transcriptional regulation by fructose. Confocal microscopy studies reaffirmed down-regulation of Mrp2. Everted intestinal sacs were incubated with 1-chloro-2,4-dinitrobenzene in the mucosal compartment, and the glutathione-conjugated derivative, dinitrophenyl- S-glutathione (DNP-SG; model Mrp2 substrate), was measured in the same compartment to estimate Mrp2 activity. Excretion of DNP-SG was substantially decreased by fructose treatment, consistent with simultaneous down-regulation of Mrp2 and GST. In addition, the effect of fructose on intestinal barrier function exerted by Mrp2 was evaluated in vivo using valsartan, a recognized Mrp2 substrate of therapeutic use. After intraduodenal administration as a bolus, intestinal absorption of valsartan was increased in fructose-drinking animals. Fructose administration also induced oxidative stress in intestinal tissue as demonstrated by significant increases of intestinal lipid peroxidation end products and activity of the antioxidant enzyme superoxide dismutase, by a decreased GSH/GSSG ratio. Moreover, fructose treatment conduced to increased intestinal levels of the proinflammatory cytokines IL-ß1 and IL-6. Collectively, our results demonstrate that metabolic syndrome-like conditions, induced by a fructose-rich diet, result in down-regulation of intestinal Mrp2 expression and activity and consequently in an impairment of its barrier function.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Fructose/adverse effects , Intestines/drug effects , ATP-Binding Cassette Transporters/genetics , Animals , Antioxidants/metabolism , Body Weight/drug effects , Cytokines/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Glutathione Transferase/metabolism , Intestinal Mucosa/metabolism , Lipid Peroxidation/drug effects , Male , Metabolic Syndrome/chemically induced , Rats, Wistar , Superoxide Dismutase/metabolism
14.
Rev. Soc. Argent. Diabetes ; 50(3): 96-107, Diciembre 2016. graf
Article in Spanish | LILACS | ID: biblio-882231

ABSTRACT

Objetivos: conocer la magnitud del riesgo de padecer diabetes mellitus 2 (DM2) en la población del Municipio de Gral. Pueyrredón que concurre a los Centros Asistenciales de Atención Primaria. Materiales y métodos: estudio observacional para determinar el riesgo de padecer DM2 mediante una entrevista donde se indagaron sobre las ocho preguntas del cuestionario FINDRISC. Resultados: la muestra del estudio estuvo constituida por 2.784 pacientes, el 54% conformada por mujeres. La edad fue agrupada en menos de 45 años el 47,5% (1.323), de 45 a 54 años el 20,9% (582), de 55 a 64 años el 18,3% (510) y más de 64 años el 13,2% (368). El 20% de la población presentó una puntuación de la escala de riesgo del cuestionario FINDRISC igual o mayor a 15, alto riesgo a muy alto riesgo de padecer diabetes en los próximos 10 años. El 43,38% presentó un IMC>30 y el 25,97% declaró recibir medicación para la hipertensión arterial. El 55,37% refería actividad física baja, el 50,79% no ingería verduras y frutas en forma diaria y el 17,98% declaró cifras de glucemias elevadas. Las variables que con mayor frecuencia se asociaron a una escala de riesgo >15 fueron: sedentarismo (80,9%), cintura >102/88 (65,7/77,2%), antecedente de hiperglucemia (64,0%), alimentación no saludable (61,9%) e IMC>30 (61,8%). El riesgo >15 según IMC fue: IMC 30 el 45,4%. Conclusiones: el 20% de la población encuestada está en alto riesgo de padecer diabetes. Una de cada dos o tres personas sin diabetes que asisten a un centro de Atención Primaria tiene un FINDRISC >15. Esta escala de riesgo es una herramienta simple, económica, de rápida confección, no invasiva y segura para detectar individuos con alto riesgo de padecer diabetes tipo 2. También puede usarse para identificar DM2 no detectada y factores de riesgo de enfermedad cardiovascular


Subject(s)
Diabetes Mellitus, Type 2 , Primary Health Care , Risk Factors
15.
Mem Inst Oswaldo Cruz ; 111(11): 707-711, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27783718

ABSTRACT

The effect of benznidazole (BZL) on the expression and activity of P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 2 (MRP2, ABCC2), the two major transporters of endogenous and exogenous compounds, was evaluated in differentiated THP-1 cells. BZL induced P-gp and MRP2 proteins in a concentration-dependent manner. The increase in mRNA levels of both transporters suggests transcriptional regulation. P-gp and MRP2 activities correlated with increased protein levels. BZL intracellular accumulation was significantly lower in BZL-pre-treated cells than in control cells. PSC833 (a P-gp inhibitor) increased the intracellular BZL concentration in both pre-treated and control cells, confirming P-gp participation in BZL efflux.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP-Binding Cassette Transporters/drug effects , Chagas Disease/drug therapy , Macrophages/drug effects , Nitroimidazoles/therapeutic use , Trypanocidal Agents/therapeutic use , ATP Binding Cassette Transporter, Subfamily B/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 2/drug effects , Cell Line , Chagas Disease/metabolism , Humans , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism , Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Up-Regulation
16.
Toxicol Appl Pharmacol ; 304: 90-8, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27180241

ABSTRACT

Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200µM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3h of exposure, returning to normality at 24h. Additionally, BZL increased glutathione peroxidase activity at 12h and the oxidized glutathione/total glutathione (GSSG/GSSG+GSH) ratio that reached a peak at 24h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG+GSH returned to control values at 48h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48h, explaining normalization of GSSG/GSSG+GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy.


Subject(s)
Multidrug Resistance-Associated Proteins , NF-E2-Related Factor 2 , Nitroimidazoles , Oxidative Stress , Trypanocidal Agents , Animals , Humans , Male , Mice , Glutathione Disulfide/metabolism , Glutathione Peroxidase/metabolism , Hep G2 Cells , Mice, Inbred C57BL , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/biosynthesis , NF-E2-Related Factor 2/biosynthesis , Nitroimidazoles/pharmacology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , RNA, Small Interfering/drug effects , Trypanocidal Agents/pharmacology
17.
Curr Med Chem ; 23(13): 1370-89, 2016.
Article in English | MEDLINE | ID: mdl-27048380

ABSTRACT

ATP binding cassette (ABC) transporters are involved in drug absorption, distribution and elimination. They also mediate multidrug resistance in cancer cells. Isoflavones, such as genistein (GNT), belong to a class of naturally-occurring compounds found at high concentrations in commonly consumed soya based-foods and dietary supplements. GNT and its metabolites interact with ABC transporters as substrates, inhibitors and/or modulators of their expression. This review compiles information about regulation of ABC transporters by GNT with special emphasis on the three major groups of ABC transporters involved in excretion of endo- and xenobiotics as follows: Pglycoprotein (MDR1, ABCB1), a group of multidrug resistance associated proteins (MRPs, ABCC subfamily) and ABCG2 (BCRP), an ABC half-transporter. The impact of these regulations on potential GNT-drug interactions is further considered.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Genistein/pharmacology , Phytoestrogens/pharmacology , Drug Interactions , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Genistein/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Phytoestrogens/metabolism
18.
Cancer Lett ; 376(1): 165-72, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27033456

ABSTRACT

Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein (GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7 and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modified neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 translation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical estrogen receptors. Results suggest potential nutrient-drug interactions that could threaten chemotherapy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/drug effects , Breast Neoplasms/drug therapy , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Genistein/toxicity , Multidrug Resistance-Associated Proteins/drug effects , Neoplasm Proteins/drug effects , Phytoestrogens/toxicity , ATP Binding Cassette Transporter, Subfamily G, Member 2/biosynthesis , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Antineoplastic Agents/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Female , Food-Drug Interactions , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Mitoxantrone/pharmacology , Multidrug Resistance-Associated Proteins/biosynthesis , Multidrug Resistance-Associated Proteins/genetics , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Protein Biosynthesis , Protein Synthesis Inhibitors/pharmacology , Risk Assessment , Up-Regulation
19.
Toxicol Appl Pharmacol ; 287(2): 178-190, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26049102

ABSTRACT

The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 µM) for 48 h exhibited a dose-response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Glutathione Transferase/biosynthesis , Multidrug Resistance-Associated Proteins/biosynthesis , CREB-Binding Protein/metabolism , Caco-2 Cells , Colforsin/pharmacology , Dinitrochlorobenzene/pharmacology , Dose-Response Relationship, Drug , Humans , Multidrug Resistance-Associated Protein 2 , Real-Time Polymerase Chain Reaction , Signal Transduction , Transcription Factor AP-1/metabolism
20.
PLoS One ; 10(3): e0119502, 2015.
Article in English | MEDLINE | ID: mdl-25781341

ABSTRACT

Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 µM) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 µM concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 µM GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 µM) and MRP2 induction by GNT (only at 10 µM), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements.


Subject(s)
Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Genistein/pharmacology , Membrane Transport Proteins/metabolism , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Antineoplastic Agents/pharmacology , Blotting, Western , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/drug effects , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Membrane Transport Proteins/drug effects , Membrane Transport Proteins/genetics , MicroRNAs/genetics , Niacinamide/pharmacology , Phytoestrogens/pharmacology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sorafenib , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...