Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Med Chem ; 64(9): 5730-5745, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33908781

ABSTRACT

Bacterial resistance to antibiotics makes previously manageable infections again disabling and lethal, highlighting the need for new antibacterial strategies. In this regard, inhibition of the bacterial division process by targeting key protein FtsZ has been recognized as an attractive approach for discovering new antibiotics. Binding of small molecules to the cleft between the N-terminal guanosine triphosphate (GTP)-binding and the C-terminal subdomains allosterically impairs the FtsZ function, eventually inhibiting bacterial division. Nonetheless, the lack of appropriate chemical tools to develop a binding screen against this site has hampered the discovery of FtsZ antibacterial inhibitors. Herein, we describe the first competitive binding assay to identify FtsZ allosteric ligands interacting with the interdomain cleft, based on the use of specific high-affinity fluorescent probes. This novel assay, together with phenotypic profiling and X-ray crystallographic insights, enables the identification and characterization of FtsZ inhibitors of bacterial division aiming at the discovery of more effective antibacterials.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Allosteric Site , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Bacterial Proteins/antagonists & inhibitors , Benzamides/chemistry , Benzamides/metabolism , Benzamides/pharmacology , Crystallography, X-Ray , Cytoskeletal Proteins/antagonists & inhibitors , Fluorescence Polarization , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Ligands , Microbial Sensitivity Tests , Protein Binding , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Structure-Activity Relationship
2.
Mol Cell ; 75(2): 209-223.e6, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31201090

ABSTRACT

Multi-subunit SMC ATPases control chromosome superstructure and DNA topology, presumably by DNA translocation and loop extrusion. Chromosomal DNA is entrapped within the tripartite SMCkleisin ring. Juxtaposed SMC heads ("J heads") or engaged SMC heads ("E heads") split the SMCkleisin ring into "S" and "K" sub-compartments. Here, we map a DNA-binding interface to the S compartment of E heads SmcScpAB and show that head-DNA association is essential for efficient DNA translocation and for traversing highly transcribed genes in Bacillus subtilis. We demonstrate that in J heads, SmcScpAB chromosomal DNA resides in the K compartment but is absent from the S compartment. Our results imply that the DNA occupancy of the S compartment changes during the ATP hydrolysis cycle. We propose that DNA translocation involves DNA entry into and exit out of the S compartment, possibly by DNA transfer between compartments and DNA segment capture.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , DNA/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/genetics , Bacterial Proteins/chemistry , Cell Cycle Proteins/chemistry , Chromosomes, Bacterial/genetics , DNA/chemistry , DNA-Binding Proteins/chemistry , Hydrolysis , Multiprotein Complexes/genetics , Nucleic Acid Conformation , Prokaryotic Cells/chemistry
3.
Mol Cell ; 67(2): 334-347.e5, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28689660

ABSTRACT

Multi-subunit SMC complexes control chromosome superstructure and promote chromosome disjunction, conceivably by actively translocating along DNA double helices. SMC subunits comprise an ABC ATPase "head" and a "hinge" dimerization domain connected by a 49 nm coiled-coil "arm." The heads undergo ATP-dependent engagement and disengagement to drive SMC action on the chromosome. Here, we elucidate the architecture of prokaryotic Smc dimers by high-throughput cysteine cross-linking and crystallography. Co-alignment of the Smc arms tightly closes the interarm space and misaligns the Smc head domains at the end of the rod by close apposition of their ABC signature motifs. Sandwiching of ATP molecules between Smc heads requires them to substantially tilt and translate relative to each other, thereby opening up the Smc arms. We show that this mechanochemical gating reaction regulates chromosome targeting and propose a mechanism for DNA translocation based on the merging of DNA loops upon closure of Smc arms.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosome Segregation , Chromosomes, Bacterial , Adenosine Triphosphate/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Crystallography, X-Ray , Cysteine , High-Throughput Screening Assays , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Conformation , Protein Multimerization , Protein Stability , Structure-Activity Relationship
4.
Chem Sci ; 8(2): 1525-1534, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28616148

ABSTRACT

FtsZ is a widely conserved tubulin-like GTPase that directs bacterial cell division and a new target for antibiotic discovery. This protein assembly machine cooperatively polymerizes forming single-stranded filaments, by means of self-switching between inactive and actively associating monomer conformations. The structural switch mechanism was proposed to involve a movement of the C-terminal and N-terminal FtsZ domains, opening a cleft between them, allosterically coupled to the formation of a tight association interface between consecutive subunits along the filament. The effective antibacterial benzamide PC190723 binds into the open interdomain cleft and stabilizes FtsZ filaments, thus impairing correct formation of the FtsZ ring for cell division. We have designed fluorescent analogs of PC190723 to probe the FtsZ structural assembly switch. Among them, nitrobenzoxadiazole probes specifically bind to assembled FtsZ rather than to monomers. Probes with several spacer lengths between the fluorophore and benzamide moieties suggest a binding site extension along the interdomain cleft. These probes label FtsZ rings of live Bacillus subtilis and Staphylococcus aureus, without apparently modifying normal cell morphology and growth, but at high concentrations they induce impaired bacterial division phenotypes typical of benzamide antibacterials. During the FtsZ assembly-disassembly process, the fluorescence anisotropy of the probes changes upon binding and dissociating from FtsZ, thus reporting open and closed FtsZ interdomain clefts. Our results demonstrate the structural mechanism of the FtsZ assembly switch, and suggest that the probes bind into the open clefts in cellular FtsZ polymers preferably to unassembled FtsZ in the bacterial cytosol.

5.
Front Microbiol ; 7: 1558, 2016.
Article in English | MEDLINE | ID: mdl-27752253

ABSTRACT

Cell division protein FtsZ is the organizer of the cytokinetic ring in almost all bacteria and a target for the discovery of new antibacterial agents that are needed to counter widespread antibiotic resistance. Bacterial cytological profiling, using quantitative microscopy, is a powerful approach for identifying the mechanism of action of antibacterial molecules affecting different cellular pathways. We have determined the cytological profile on Bacillus subtilis cells of a selection of small molecule inhibitors targeting FtsZ on different binding sites. FtsZ inhibitors lead to long undivided cells, impair the normal assembly of FtsZ into the midcell Z-rings, induce aberrant ring distributions, punctate FtsZ foci, membrane spots and also modify nucleoid length. Quantitative analysis of cell and nucleoid length combined, or the Z-ring distribution, allows categorizing FtsZ inhibitors and to distinguish them from antibiotics with other mechanisms of action, which should be useful for identifying new antibacterial FtsZ inhibitors. Biochemical assays of FtsZ polymerization and GTPase activity combined explain the cellular effects of the FtsZ polymer stabilizing agent PC190723 and its fragments. MciZ is a 40-aminoacid endogenous inhibitor of cell division normally expressed during sporulation in B. subtilis. Using FtsZ cytological profiling we have determined that exogenous synthetic MciZ is an effective inhibitor of B. subtilis cell division, Z-ring formation and localization. This finding supports our cell-based approach to screen for FtsZ inhibitors and opens new possibilities for peptide inhibitors of bacterial cell division.

6.
ACS Chem Biol ; 10(10): 2382-92, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26247422

ABSTRACT

FtsZ is the organizer of cell division in most bacteria and a target in the quest for new antibiotics. FtsZ is a tubulin-like GTPase, in which the active site is completed at the interface with the next subunit in an assembled FtsZ filament. Fluorescent mant-GTP has been extensively used for competitive binding studies of nucleotide analogs and synthetic GTP-replacing inhibitors possessing antibacterial activity. However, its mode of binding and whether the mant tag interferes with FtsZ assembly function were unknown. Mant-GTP exists in equilibrium as a mixture of C2'- and C3'-substituted isomers. We have unraveled the molecular recognition process of mant-GTP by FtsZ monomers. Both isomers bind in the anti glycosidic bond conformation: 2'-mant-GTP in two ribose puckering conformations and 3'-mant-GTP in the preferred C2' endo conformation. In each case, the mant tag strongly interacts with FtsZ at an extension of the GTP binding site, which is also supported by molecular dynamics simulations. Importantly, mant-GTP binding induces archaeal FtsZ polymerization into inactive curved filaments that cannot hydrolyze the nucleotide, rather than straight GTP-hydrolyzing assemblies, and also inhibits normal assembly of FtsZ from the Gram-negative bacterium Escherichia coli but is hydrolyzed by FtsZ from Gram-positive Bacillus subtilis. Thus, the specific interactions provided by the fluorescent mant tag indicate a new way to search for synthetic FtsZ inhibitors that selectively suppress the cell division of bacterial pathogens.


Subject(s)
Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Fluorescent Dyes/chemistry , Guanosine Triphosphate/chemistry , Magnetic Resonance Spectroscopy , ortho-Aminobenzoates/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Cell Division/drug effects , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/chemistry , Guanosine Triphosphate/pharmacology , Models, Biological , Molecular Dynamics Simulation , Molecular Structure , Protein Binding/drug effects , Protein Conformation , ortho-Aminobenzoates/pharmacology
7.
ACS Chem Biol ; 10(3): 834-43, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25486266

ABSTRACT

Essential cell division protein FtsZ is considered an attractive target in the search for antibacterials with novel mechanisms of action to overcome the resistance problem. FtsZ undergoes GTP-dependent assembly at midcell to form the Z-ring, a dynamic structure that evolves until final constriction of the cell. Therefore, molecules able to inhibit its activity will eventually disrupt bacterial viability. In this work, we report a new series of small molecules able to replace GTP and to specifically inhibit FtsZ, blocking the bacterial division process. These new synthesized inhibitors interact with the GTP-binding site of FtsZ (Kd = 0.4-0.8 µM), display antibacterial activity against Gram-positive pathogenic bacteria, and show selectivity against tubulin. Biphenyl derivative 28 stands out as a potent FtsZ inhibitor (Kd = 0.5 µM) with high antibacterial activity [MIC (MRSA) = 7 µM]. In-depth analysis of the mechanism of action of compounds 22, 28, 33, and 36 has revealed that they act as effective inhibitors of correct FtsZ assembly, blocking bacterial division and thus leading to filamentous undivided cells. These findings provide a compelling rationale for the development of compounds targeting the GTP-binding site as antibacterial agents and open the door to antibiotics with novel mechanisms of action.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Bacillus subtilis/drug effects , Bacterial Proteins/antagonists & inhibitors , Biphenyl Compounds/chemical synthesis , Cytoskeletal Proteins/antagonists & inhibitors , Guanosine Triphosphate/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Naphthalenes/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/chemistry , Bacillus subtilis/growth & development , Bacterial Proteins/chemistry , Binding Sites , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Cytoskeletal Proteins/chemistry , Kinetics , Methicillin-Resistant Staphylococcus aureus/chemistry , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Models, Molecular , Naphthalenes/chemistry , Naphthalenes/pharmacology , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship
8.
J Am Chem Soc ; 135(44): 16418-28, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24079270

ABSTRACT

FtsZ is the key protein of bacterial cell-division and target for new antibiotics. Selective inhibition of FtsZ polymerization without impairing the assembly of the eukaryotic homologue tubulin was demonstrated with C8-substituted guanine nucleotides. By combining NMR techniques with biochemical and molecular modeling procedures, we have investigated the molecular recognition of C8-substituted-nucleotides by FtsZ from Methanococcus jannaschii (Mj-FtsZ) and Bacillus subtilis (Bs-FtsZ). STD epitope mapping and trNOESY bioactive conformation analysis of each nucleotide were employed to deduce differences in their recognition mode by each FtsZ species. GMP binds in the same anti conformation as GTP, whereas 8-pyrrolidino-GMP binds in the syn conformation. However, the anti conformation of 8-morpholino-GMP is selected by Bs-FtsZ, while Mj-FtsZ binds both anti- and syn-geometries. The inhibitory potencies of the C8-modified-nucleotides on the assembly of Bs-FtsZ, but not of Mj-FtsZ, correlate with their binding affinities. Thus, MorphGTP behaves as a nonhydrolyzable analog whose binding induces formation of Mj-FtsZ curved filaments, resembling polymers formed by the inactive forms of this protein. NMR data, combined with molecular modeling protocols, permit explanation of the mechanism of FtsZ assembly impairment by C8-substituted GTP analogs. The presence of the C8-substituent induces electrostatic remodeling and small structural displacements at the association interface between FtsZ monomers to form filaments, leading to complete assembly inhibition or to formation of abnormal FtsZ polymers. The inhibition of bacterial Bs-FtsZ assembly may be simply explained by steric clashes of the C8-GTP-analogs with the incoming FtsZ monomer. This information may facilitate the design of antibacterial FtsZ inhibitors replacing GTP.


Subject(s)
Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Cytoskeletal Proteins/chemistry , Guanine Nucleotide Dissociation Inhibitors/chemistry , Methanocaldococcus/chemistry , Nuclear Magnetic Resonance, Biomolecular , Models, Molecular , Nucleic Acid Conformation
9.
ACS Chem Biol ; 8(9): 2072-83, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23855511

ABSTRACT

Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Proteins/metabolism , Binding Sites/drug effects , Cytoskeletal Proteins/metabolism , Guanosine Triphosphate/metabolism , Bacillus subtilis/cytology , Bacillus subtilis/drug effects , Bacteria/cytology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacterial Proteins/chemistry , Cytoskeletal Proteins/chemistry , Drug Discovery , Halogenation , Humans , Models, Molecular , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
10.
Biochemistry ; 49(49): 10458-72, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21058659

ABSTRACT

Essential cell division protein FtsZ forms the bacterial cytokinetic ring and is a target for new antibiotics. FtsZ monomers bind GTP and assemble into filaments. Hydrolysis to GDP at the association interface between monomers leads to filament disassembly. We have developed a homogeneous competition assay, employing the fluorescence anisotropy change of mant-GTP upon binding to nucleotide-free FtsZ, which detects compounds binding to the nucleotide site in FtsZ monomers and measures their affinities within the millimolar to 10 nM range. We have employed this method to determine the apparent contributions of the guanine, ribose, and the α-, ß-, and γ-phosphates to the free energy change of nucleotide binding. Similar relative contributions have also been estimated through molecular dynamics and binding free energy calculations, employing the crystal structures of FtsZ-nucleotide complexes. We find an energetically dominant contribution of the ß-phosphate, comparable to the whole guanosine moiety. GTP and GDP bind with similar observed affinity to FtsZ monomers. Loss of the regulatory γ-phosphate results in a predicted accommodation of GDP which has not been observed in the crystal structures. The binding affinities of a series of C8-substituted GTP analogues, known to inhibit FtsZ but not eukaryotic tubulin assembly, correlate with their inhibitory capacity on FtsZ polymerization. Our methods permit testing of FtsZ inhibitors targeting its nucleotide site, as well as compounds from virtual screening of large synthetic libraries. Our results give insight into the FtsZ-nucleotide interactions, which could be useful in the rational design of new inhibitors, especially GTP phosphate mimetics.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Molecular Dynamics Simulation , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/metabolism , Bacterial Proteins/antagonists & inhibitors , Binding Sites , Binding, Competitive/physiology , Cell Division/physiology , Crystallography, X-Ray , Cytoskeletal Proteins/antagonists & inhibitors , Methanococcus/chemistry , Methanococcus/metabolism , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/metabolism , Reproducibility of Results
11.
J Biol Chem ; 285(19): 14239-46, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20212044

ABSTRACT

Cell division protein FtsZ can form single-stranded filaments with a cooperative behavior by self-switching assembly. Subsequent condensation and bending of FtsZ filaments are important for the formation and constriction of the cytokinetic ring. PC190723 is an effective bactericidal cell division inhibitor that targets FtsZ in the pathogen Staphylococcus aureus and Bacillus subtilis and does not affect Escherichia coli cells, which apparently binds to a zone equivalent to the binding site of the antitumor drug taxol in tubulin (Haydon, D. J., Stokes, N. R., Ure, R., Galbraith, G., Bennett, J. M., Brown, D. R., Baker, P. J., Barynin, V. V., Rice, D. W., Sedelnikova, S. E., Heal, J. R., Sheridan, J. M., Aiwale, S. T., Chauhan, P. K., Srivastava, A., Taneja, A., Collins, I., Errington, J., and Czaplewski, L. G. (2008) Science 312, 1673-1675). We have found that the benzamide derivative PC190723 is an FtsZ polymer-stabilizing agent. PC190723 induced nucleated assembly of Bs-FtsZ into single-stranded coiled protofilaments and polymorphic condensates, including bundles, coils, and toroids, whose formation could be modulated with different solution conditions. Under conditions for reversible assembly of Bs-FtsZ, PC190723 binding reduced the GTPase activity and induced the formation of straight bundles and ribbons, which was also observed with Sa-FtsZ but not with nonsusceptible Ec-FtsZ. The fragment 2,6-difluoro-3-methoxybenzamide also induced Bs-FtsZ bundling. We propose that polymer stabilization by PC190723 suppresses in vivo FtsZ polymer dynamics and bacterial division. The biochemical action of PC190723 on FtsZ parallels that of the microtubule-stabilizing agent taxol on the eukaryotic structural homologue tubulin. Both taxol and PC190723 stabilize polymers against disassembly by preferential binding to each assembled protein. It is yet to be investigated whether both ligands target structurally related assembly switches.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Excipients/pharmacology , Pyridines/pharmacology , Thiazoles/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/enzymology , Bacillus subtilis/growth & development , Binding Sites , Cell Division/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...