Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Res Rev ; 35(4): 678-97, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25604534

ABSTRACT

Poly (ADP-ribose) polymerase (PARP) inhibitors are particularly efficient against tumors with defects in the homologous recombination repair pathway. Nonetheless poly(ADP-ribosylation) (PARylation) modulates prometastasic activities and adaptation of tumor to a hostile microenvironment. Modulation of metastasis-promoting traits is possible through the alteration of key transcription factors involved in the regulation of the hypoxic response, the recruitment of new vessels (or angiogenesis), and the stimulation of epithelial to mesenchymal transition (EMT). In this review, we summarized some of the findings that focalize on PARP-1's action on tumor aggressiveness, suggesting new therapeutic opportunities against an assembly of tumors not necessarily bearing DNA repair defects. Metastasis accounts for the vast majority of mortality derived from solid cancer. PARP-1 is an active player in tumor adaptation to metastasis and PARP inhibitors, recognized as promising therapeutic agents against homologous recombination deficient tumors, has novel properties responsible for the antimetastatic actions in different tumor settings.


Subject(s)
Disease Progression , Neoplasms/metabolism , Neoplasms/pathology , Poly Adenosine Diphosphate Ribose/metabolism , Animals , Cell Hypoxia , Epithelial-Mesenchymal Transition , Humans , Neoplasms/blood supply , Poly(ADP-ribose) Polymerases/metabolism
2.
Autophagy ; 5(1): 61-74, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19001878

ABSTRACT

Autophagy is a lysosome-dependent degradative pathway frequently activated in tumor cells treated with chemotherapy or radiation. PARP-1 has been implicated in different pathways leading to cell death and its inhibition potentiates chemotherapy-induced cell death. Whether PARP-1 participates in the cell's decision to commit to autophagy following DNA damage is still not known. To address this issue PARP-1 wild-type and deficient cells have been treated with a dose of doxorubicin that induces autophagy. Electron microscopy examination and GFP-LC3 transfection revealed autophagic vesicles and increased expression of genes involved in autophagy (bnip-3, cathepsin b and l and beclin-1) in wild-type cells treated with doxo but not in parp-1(-/-) cells or cells treated with a PARP inhibitor. Mechanistically the lack of autophagic features in PARP-1 deficient/PARP inhibited cells is attributed to prevention of ATP and NAD(+) depletion and to the activation of the key autophagy regulator mTOR. Pharmacological or genetical inhibition of autophagy results in increased cell death, suggesting a protective role of autophagy induced by doxorubicin. These results suggest that autophagy might be cytoprotective during the response to DNA damage and suggest that PARP-1 activation is involved in the cell's decision to undergo autophagy.


Subject(s)
Autophagy , DNA Damage , Poly(ADP-ribose) Polymerases/metabolism , 1-Naphthylamine/analogs & derivatives , 1-Naphthylamine/pharmacology , 3T3 Cells , Adenosine Triphosphate/deficiency , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins , Autophagy/drug effects , Autophagy/genetics , Autophagy-Related Protein 5 , Beclin-1 , Cell Survival/drug effects , Doxorubicin/pharmacology , Enzyme Activation/drug effects , Gene Deletion , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/ultrastructure , Models, Biological , NAD/deficiency , Naphthalimides/pharmacology , Necrosis/enzymology , Poly(ADP-ribose) Polymerase Inhibitors , Protein Kinases/metabolism , Proteins/metabolism , Quinolones/pharmacology , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , TOR Serine-Threonine Kinases , Up-Regulation/drug effects
3.
BMC Mol Biol ; 8: 29, 2007 Apr 25.
Article in English | MEDLINE | ID: mdl-17459151

ABSTRACT

ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Damage , DNA-Binding Proteins/metabolism , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Adenosine Diphosphate/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/genetics , Cell Line , DNA-Binding Proteins/genetics , Humans , Mice , Mice, Knockout , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/deficiency , Poly(ADP-ribose) Polymerases/genetics , Protein Binding , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...