Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35957120

ABSTRACT

The control of a lens's numerical aperture has potential applications in areas such as photography and imaging, displays, sensing, laser processing and even laser-implosion fusion. In such fields, the ability to control lens properties dynamically is of much interest, and active meta-lenses of various kinds are under investigation due to their modulation speed and compactness. However, as of yet, meta-lenses that explicitly offer dynamic control of a lens's numerical aperture have received little attention. Here, we design and simulate active meta-lenses (specifically, focusing meta-mirrors) using chalcogenide phase-change materials to provide such control. We show that, operating at a wavelength of 3000 nm, our devices can change the numerical aperture by up to a factor of 1.85 and operate at optical intensities of the order of 1.2 × 109 Wm-2. Furthermore, we show the scalability of our design towards shorter wavelengths (visible spectrum), where we demonstrate a change in NA by a factor of 1.92.

2.
ACS Appl Mater Interfaces ; 14(2): 3446-3454, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34981913

ABSTRACT

Plasmonic metasurfaces based on the extraordinary optical transmission (EOT) effect can be designed to efficiently transmit specific spectral bands from the visible to the far-infrared regimes, offering numerous applications in important technological fields such as compact multispectral imaging, biological and chemical sensing, or color displays. However, due to their subwavelength nature, EOT metasurfaces are nowadays fabricated with nano- and micro-lithographic techniques, requiring many processing steps and carrying out in expensive cleanroom environments. In this work, we propose and experimentally demonstrate a novel, single-step process for the rapid fabrication of high-performance mid- and long-wave infrared EOT metasurfaces employing ultrafast direct laser writing. Microhole arrays composing extraordinary transmission metasurfaces were fabricated over an area of 4 mm2 in timescales of units of minutes, employing single pulse ablation of 40 nm thick Au films on dielectric substrates mounted on a high-precision motorized stage. We show how by carefully characterizing the influence of only three key experimental parameters on the processed micro-morphologies (namely, laser pulse energy, scan velocity, and beam shaping slit), we can have on-demand control of the optical characteristics of the extraordinary transmission effect in terms of transmission wavelength, quality factor, and polarization sensitivity of the resonances. To illustrate this concept, a set of EOT metasurfaces having different performances and operating in different spectral regimes has been successfully designed, fabricated, and tested. Comparison between transmittance measurements and numerical simulations has revealed that all the fabricated devices behave as expected, thus demonstrating the high performance, flexibility, and reliability of the proposed fabrication method. We believe that our findings provide the pillars for mass production of EOT metasurfaces with on-demand optical properties and create new research trends toward single-step laser fabrication of metasurfaces with alternative geometries and/or functionalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...