Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36840081

ABSTRACT

Potato (Solanum tuberosum L.) is often considered a water-sensitive crop and its production can be threatened by drought events, making water stress tolerance a trait of increasing interest. In this study, a panel of 144 tetraploid potato genotypes was evaluated for two consecutive years (2019 and 2020) to observe the variation of several physiological traits such as chlorophyll content and fluorescence, stomatal conductance, NDVI, and leaf area and circumference. In addition, agronomic parameters such as yield, tuber fresh weight, tuber number, starch content, dry matter and reducing sugars were determined. GGP V3 Potato array was used to genotype the population, obtaining a total of 18,259 high-quality SNP markers. Marker-trait association was performed using GWASpoly package in R software and Q + K linear mixed models were considered. This approach allowed us to identify eighteen SNP markers significantly associated with the studied traits in both treatments and years, which were related to genes with known functions. Markers related to chlorophyll content and number of tubers under control and stress conditions, and related to stomatal conductance, NDVI, yield and reducing sugar content under water stress, were identified. Although these markers were distributed throughout the genome, the SNPs associated with the traits under control conditions were found mainly on chromosome 11, while under stress conditions they were detected on chromosome 4. These results contribute to the knowledge of the mechanisms of potato tolerance to water stress and are useful for future marker-assisted selection programs.

2.
Front Nutr ; 9: 999877, 2022.
Article in English | MEDLINE | ID: mdl-36324619

ABSTRACT

The potato (Solanum tuberosum L.) is the world's fifth most important staple food with high socioeconomic relevance. Several potato cultivars obtained by selection and crossbreeding are currently on the market. This diversity causes tubers to exhibit different behaviors depending on the processing to which they are subjected. Therefore, it is interesting to identify cultivars with specific characteristics that best suit consumer preferences. In this work, we present a method to classify potatoes according to their cooking or frying as crisps aptitude using NIR hyperspectral imaging (HIS) combined with a Partial Least Squares Discriminant Analysis (PLS-DA). Two classification approaches were used in this study. First, a classification model using the mean spectra of a dataset composed of 80 tubers belonging to 10 different cultivars. Then, a pixel-wise classification using all the pixels of each sample of a small subset of samples comprised of 30 tubers. Hyperspectral images were acquired using fresh-cut potato slices as sample material placed on a mobile platform of a hyperspectral system in the NIR range from 900 to 1,700 nm. After image processing, PLS-DA models were built using different pre-processing combinations. Excellent accuracy rates were obtained for the models developed using the mean spectra of all samples with 90% of tubers correctly classified in the external dataset. Pixel-wise classification models achieved lower accuracy rates between 66.62 and 71.97% in the external validation datasets. Moreover, a forward interval PLS (iPLS) method was used to build pixel-wise PLS-DA models reaching accuracies above 80 and 71% in cross-validation and external validation datasets, respectively. Best classification result was obtained using a subset of 100 wavelengths (20 intervals) with 71.86% of pixels correctly classified in the validation dataset. Classification maps were generated showing that false negative pixels were mainly located at the edges of the fresh-cut slices while false positive were principally distributed at the central pith, which has singular characteristics.

3.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430379

ABSTRACT

Potato (Solanum tuberosum L.) is one of the most important crops worldwide, but due to its sensitivity to drought, its production can be affected by water availability. In this study, the varieties Agria and Zorba were used to determine the expression differences between control and water-stressed plants. For this purpose, they were sequenced by RNAseq, obtaining around 50 million transcripts for each variety and treatment. When comparing the significant transcripts obtained from control and drought-stressed plants of the Agria variety, we detected 931 genes that were upregulated and 2077 genes that were downregulated under stress conditions. When both treatments were compared in Zorba plants, 735 genes were found to be upregulated and 923 genes were found to be downregulated. Significantly more DEGs were found in the Agria variety, indicating a good stress response of this variety. "Abscisic acid and environmental stress-inducible protein TAS14-like" was the most overexpressed gene under drought conditions in both varieties, but expression differences were also found in numerous transcription factors and heat shock proteins. The principal GO term found was "cellular components", more specifically related to the cell membrane and the cell wall, but other metabolic pathways such as carbohydrate metabolism and osmotic adjustment were also identified. These results provide valuable information related to the molecular mechanisms of tolerance to water stress in order to establish the basis for breeding new, more tolerant varieties.


Subject(s)
Solanum tuberosum , Solanum tuberosum/metabolism , Dehydration/genetics , Tetraploidy , Gene Expression Regulation, Plant , Plant Breeding , Gene Expression Profiling
4.
Front Nutr ; 8: 683399, 2021.
Article in English | MEDLINE | ID: mdl-35071287

ABSTRACT

Maize (Zea mays L.) is one of the major crops of the world for feed, food, and industrial uses. It was originated in Central America and introduced into Europe and other continents after Columbus trips at the end of the 15th century. Due to the large adaptability of maize, farmers have originated a wide variability of genetic resources with wide diversity of adaptation, characteristics, and uses. Nowadays, in Europe, maize is mainly used for feed, but several food specialties were originated during these five centuries of maize history and became traditional food specialties. This review summarizes the state of the art of traditional foodstuffs made with maize in Southern, South-Western and South-Eastern Europe, from an historic evolution to the last research activities that focus on improving sustainability, quality and safety of food production.

5.
BMC Plant Biol ; 16(1): 127, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27267760

ABSTRACT

BACKGROUND: Breeding for cold tolerance in maize promises to allow increasing growth area and production in temperate zones. The objective of this research was to conduct genome-wide association analyses (GWAS) in temperate maize inbred lines and to find strategies for pyramiding genes for cold tolerance. Two panels of 306 dent and 292 European flint maize inbred lines were evaluated per se and in testcrosses under cold and control conditions in a growth chamber. We recorded indirect measures for cold tolerance as the traits number of days from sowing to emergence, relative leaf chlorophyll content or quantum efficiency of photosystem II. Association mapping for identifying genes associated to cold tolerance in both panels was based on genotyping with 49,585 genome-wide single nucleotide polymorphism (SNP) markers. RESULTS: We found 275 significant associations, most of them in the inbreds evaluated per se, in the flint panel, and under control conditions. A few candidate genes coincided between the current research and previous reports. A total of 47 flint inbreds harbored the favorable alleles for six significant quantitative trait loci (QTL) detected for inbreds per se evaluated under cold conditions, four of them had also the favorable alleles for the main QTL detected from the testcrosses. Only four dent inbreds (EZ47, F924, NK807 and PHJ40) harbored the favorable alleles for three main QTL detected from the evaluation of the dent inbreds per se under cold conditions. There were more QTL in the flint panel and most of the QTL were associated with days to emergence and ΦPSII. CONCLUSIONS: These results open new possibilities to genetically improve cold tolerance either with genome-wide selection or with marker assisted selection.


Subject(s)
Cold Temperature , Stress, Physiological/genetics , Zea mays/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Genome-Wide Association Study , Genotype , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...