Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 828, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972919

ABSTRACT

Crystallization of monosodium urate monohydrate (MSU) leads to painful gouty arthritis. Despite extensive research it is still unknown how this pathological biomineralization occurs, which hampers its prevention. Here we show how inflammatory MSU crystals form after a non-inflammatory amorphous precursor (AMSU) that nucleates heterogeneously on collagen fibrils from damaged articular cartilage of gout patients. This non-classical crystallization route imprints a nanogranular structure to biogenic acicular MSU crystals, which have smaller unit cell volume, lower microstrain, and higher crystallinity than synthetic MSU. These distinctive biosignatures are consistent with the template-promoted crystallization of biotic MSU crystals after AMSU at low supersaturation, and their slow growth over long periods of time (possibly years) in hyperuricemic gout patients. Our results help to better understand gout pathophysiology, underline the role of cartilage damage in promoting MSU crystallization, and suggest that there is a time-window to treat potential gouty patients before a critical amount of MSU has slowly formed as to trigger a gout flare.


Subject(s)
Crystallization , Gout , Uric Acid , Uric Acid/metabolism , Humans , Gout/metabolism , Gout/pathology , Biomineralization , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology
2.
Small ; : e2402581, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940389

ABSTRACT

In this work, the potential of bio-inspired strategies for the synthesis of calcium sulfate (CaSO4·nH2O) materials for heritage conservation is explored. For this, a nonclassical multi-step crystallization mechanism to understand the effect of calcein- a fluorescent chelating agent with a high affinity for divalent cations- on the nucleation and growth of calcium sulfate phases is proposed. Moving from the nano- to the macro-scale, this strategy sets the basis for the design and production of fluorescent nano-bassanite (NB-C; CaSO4·0.5H2O), with application as a fully compatible consolidant for the conservation of historic plasterwork. Once applied to gypsum (CaSO4·2H2O) plaster specimens, cementation upon hydration of nano-bassanite results in a significant increase in mechanical strength, while intracrystalline occlusion of calcein in newly-formed gypsum cement improves its weathering resistance. Furthermore, under UV irradiation, the luminescence produced by calcein molecules occluded in gypsum crystals formed upon nano-bassanite hydration allows the easy identification of the newly deposited consolidant within the treated gypsum plaster without altering the substrate's appearance.

3.
Small ; 19(33): e2300596, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37072886

ABSTRACT

The relatively recent development of nanolimes (i.e., alcoholic dispersions of Ca(OH)2 nanoparticles) has paved the way for new approaches to the conservation of important art works. Despite their many benefits, nanolimes have shown limited reactivity, back-migration, poor penetration, and lack of proper bonding to silicate substrates. In this work a novel solvothermal synthesis process is presented by which extremely reactive nanostructured Ca(OH)2 particles are obtained using calcium ethoxide as the main precursor species. Moreover, it is demonstrated that this material can be easily functionalized with silica-gel derivatives under mild synthesis conditions, thereby preventing particle growth, increasing total specific surface area, enhancing reactivity, modifying colloidal behavior, and functioning as self-integrated coupling agents. Additionally, the formation of calcium silicate hydrate (CSH) nanocement is promoted by the presence of water, resulting in optimal bonding when applied to silicate substrates, as evidenced by the higher reinforcement effect produced on treated Prague sandstone specimens as compared to those consolidated with nonfunctionalized commercial nanolime. The functionalization of nanolimes is not only a promising strategy for the design of optimized consolidation treatments for the cultural heritage, but may also have important implications for the development of advanced nanomaterials for building, environmental, or biomedical applications.

4.
Sci Adv ; 9(16): eadf6138, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37075113

ABSTRACT

Ancient Maya produced some of the most durable lime plasters on Earth, yet how this was achieved remains a secret. Here, we show that ancient Maya plasters from Copan (Honduras) include organics and have a calcite cement with meso-to-nanostructural features matching those of calcite biominerals (e.g., shells). To test the hypothesis that the organics could play a similar toughening role as (bio)macromolecules in calcium carbonate biominerals, we prepared plaster replicas adding polysaccharide-rich bark extracts from Copan's local trees following an ancient Maya building tradition. We show that the replicas display similar features as the organics-containing ancient Maya plasters and demonstrate that, as in biominerals, in both cases, their calcite cement includes inter- and intracrystalline organics that impart a marked plastic behavior and enhanced toughness while increasing weathering resistance. Apparently, the lime technology developed by ancient Maya, and likely other ancient civilizations that used natural organic additives to prepare lime plasters, fortuitously exploited a biomimetic route for improving carbonate binders performance.


Subject(s)
Biomimetics , Plant Extracts , Calcium Compounds , Calcium Carbonate
5.
Environ Pollut ; 306: 119451, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35569621

ABSTRACT

Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectrophotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO42-) and selenite (SeO32-) to red Se(-S)0, and arsenate (AsO43-) to arsenite (AsO33-). The release of H2S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As2S3. When As and Se oxyanions were mixed, both As-S and Se(-S)0 biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (-24 to -38 mV). Kinetic analysis indicated the following reduction yields: SeO32- (90%), AsO43- (60%), and SeO42- (<10%). The mix of SeO32- with AsO43- led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO42- incubated with AsO43- boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.


Subject(s)
Arsenic , Selenium Compounds , Selenium , Shewanella , Arsenates/metabolism , Arsenic/metabolism , Biomineralization , Kinetics , Selenic Acid , Selenious Acid , Selenium/metabolism , Shewanella/metabolism
6.
Chem Commun (Camb) ; 57(59): 7304-7307, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34223581

ABSTRACT

We report a novel solvothermal route for the production of bassanite (CaSO4·0.5H2O) nanoparticles using amorphous Ca-ethoxide as a precursor. Bassanite nanorods, 120-200 nm in length, with the highest specific surface area reported so far (54 m2 g-1) and enhanced reactivity, are obtained at 78 °C and 1 atm. Such nanoparticles may find application in several fields, including biomaterials, drug delivery, and cultural heritage conservation.

7.
ACS Biomater Sci Eng ; 7(6): 2346-2357, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33973778

ABSTRACT

Mineralization of hydroxylapatite (HAp), the main inorganic phase in bone, follows nonclassical crystallization routes involving metastable precursors and is strongly influenced by organic macromolecules. However, the effect of small organic molecules such as citrate on the formation of HAp is not well constrained. Using potentiometric titration experiments and titration calorimetry, in combination with a multianalytical approach, we show that citrate stabilizes prenucleation species as well as a liquid-like calcium phosphate precursor formed before any solid phase nucleates in the system. The stabilization of a liquid-like precursor phase could facilitate infiltration into the cavities of the collagen fibrils during bone mineralization, explaining the enhancement of collagen-mediated mineralization by citrate reported in previous studies. Hence, citrate can influence bone mineralization way before any solid phase (amorphous or crystalline) is formed. We also show that HAp formation after amorphous calcium phosphate (ACP) in the absence and presence of citrate results in nanoplates of about 5-12 nm thick, elongated along the c axis. Such nanoplates are made up of HAp nanocrystallites with a preferred c axis orientation and with interspersed ACP. The nanoplatelet morphology, size, and preferred crystallographic orientation, remarkably similar to those of bone HAp nanocrystals, appear to be an intrinsic feature of HAp formed from an amorphous precursor. Our results challenge current models for HAp mineralization in bone and the role of citrate, offering new clues to help answer the long-standing question as to why natural evolution favored HAp as the mineral phase in bone.


Subject(s)
Calcification, Physiologic , Durapatite , Citric Acid , Collagen , Crystallization
8.
Nanomaterials (Basel) ; 11(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477452

ABSTRACT

In this work, calcium oxalate (CaOx) precursors were stabilized by poly(acrylic acid) (PAA) as an additive under in vitro crystallization assays involving the formation of pre-nucleation clusters of CaOx via a non-classical crystallization (NCC) pathway. The in vitro crystallization of CaOx was carried out in the presence of 10, 50 and 100 mg/L PAA by using automatic calcium potentiometric titration experiments at a constant pH of 6.7 at 20 °C. The results confirmed the successful stabilization of amorphous calcium oxalate II and III (ACOII and ACO III) nanoparticles formed after PNC in the presence of PAA and suggest the participation and stabilization of polymer-induced liquid-precursor (PILP) in the presence of PAA. We demonstrated that PAA stabilizes CaOx precursors with size in the range of 20-400 nm. PAA additive plays a key role in the in vitro crystallization of CaOx stabilizing multi-ion complexes in the pre-nucleation stage, thereby delaying the nucleation of ACO nanoparticles. Indeed, PAA additive favors the formation of more hydrated and soluble phase of ACO nanoparticles that are bound by electrostatic interactions to carboxylic acid groups of PAA during the post-nucleation stage. These findings may help to a better understanding of the pathological mineralization resulting in urolithiasis in mammals.

9.
Front Microbiol ; 11: 599144, 2020.
Article in English | MEDLINE | ID: mdl-33240254

ABSTRACT

To overcome the limitations of traditional conservation treatments used for protection and consolidation of stone and lime mortars and plasters, mostly based on polymers or alkoxysilanes, a novel treatment based on the activation of indigenous carbonatogenic bacteria has been recently proposed and applied both in the laboratory and in situ. Despite very positive results, little is known regarding its effect on the evolution of the indigenous bacterial communities, specially under hot and humid tropical conditions where proliferation of microorganisms is favored, as it is the case of the Maya area. Here, we studied changes in bacterial diversity of severely degraded tuff stone and lime plaster at the archeological Maya site of Copan (Honduras) after treatment with the patented sterile M-3P nutritional solution. High-throughput sequencing by Illumina MiSeq technology shows significant changes in the bacterial population of the treated stones, enhancing the development of Arthrobacter, Micrococcaceae, Nocardioides, Fictibacillus, and Streptomyces, and, in one case, Rubrobacter (carved stone blocks at Structure 18). In the lime plaster, Arthrobacter, Fictibacillus, Bacillus, Agrococcus, and Microbacterium dominated after treatment. Most of these detected genera have been shown to promote calcium carbonate biomineralization, thus implying that the novel bio-conservation treatment would be effective. Remarkably, the treatment induced the reduction or complete disappearance of deleterious acid-producing bacteria such as Marmoricola or the phylum Acidobacteria. The outcome of this study demonstrates that such a bio-conservation treatment can safely and effectively be applied on temples, sculptures and stuccos of the Maya area and, likely, in other hot and humid environments.

10.
Nat Commun ; 8(1): 768, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28974672

ABSTRACT

Although calcium oxalates are relevant biominerals, their formation mechanisms remain largely unresolved. Here, we investigate the early stages of calcium oxalate formation in pure and citrate-bearing solutions. Citrate is used as a well-known oxalate precipitation inhibitor; moreover, it resembles the functional domains of the biomolecules that modulate biomineralization. Our data suggest that calcium oxalate forms after Ca2+ and C2O42- association into polynuclear stable complexes that aggregate into larger assemblies, from which amorphous calcium oxalate nucleates. Previous work has explained citrate inhibitory effects according to classical theories. Here we show that citrate interacts with all early stage CaC2O4 species (polynuclear stable complexes and amorphous precursors), inhibiting calcium oxalate nucleation by colloidal stabilization of polynuclear stable complexes and amorphous calcium oxalate. The control that citrate exerts on calcium oxalate biomineralization may thus begin earlier than previously thought. These insights provide information regarding the mechanisms governing biomineralization, including pathological processes (e.g., kidney stone formation).The formation mechanism of abundant calcium oxalate biomaterials is unresolved. Here the authors show the early stages of calcium oxalate formation in pure and citrate-bearing solutions by using a titration set-up in conjunction with solution quenching, transmission electron microscopy and analytical ultracentrifugation.


Subject(s)
Calcium Oxalate/metabolism , Citric Acid/metabolism , Kidney Calculi/metabolism , Chemical Precipitation , Humans
11.
Langmuir ; 33(41): 10936-10950, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28931282

ABSTRACT

Hydrated lime (Ca(OH)2) is a vernacular art and building material produced following slaking of CaO in water. If excess water is used, a slurry, called lime putty, forms, which has been the preferred craftsman selection for formulating lime mortars since Roman times. A variety of natural additives were traditionally added to the lime putty to improve its quality. The mucilaginous juice extracted from nopal cladodes has been and still is used as additive incorporated in the slaking water for formulation of lime mortars and plasters, both in ancient Mesoamerica and in the USA Southwest. Little is known on the ultimate effects of this additive on the crystallization and microstructure of hydrated lime. Here, we show that significant changes in habit and size of portlandite crystals occur following slaking in the presence of nopal juice as well as compositionally similar citrus pectin. Both additives contain polysaccharides made up of galacturonic acid and neutral sugar residues. The carboxyl (and hydroxyl) functional groups present in these residues and in their alkaline degradation byproducts, which are deprotonated at the high pH (12.4) produced during lime slaking, strongly interact with newly formed Ca(OH)2 crystals acting in two ways: (a) as nucleation inhibitors, promoting the formation of nanosized crystals, and (b) as habit modifiers, favoring the development of planar habit following their adsorption onto positively charged (0001)Ca(OH)2 faces. Adsorption of polysaccharides on Ca(OH)2 crystals prevents the development of large particles, resulting in a very reactive, nanosized portlandite slurry. It also promotes steric stabilization, which limits aggregation, thus enhancing the colloidal nature of the lime putty. Overall, these effects are very favorable for the preparation of highly plastic lime mortars with enhanced properties.

12.
Nat Commun ; 8(1): 279, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28819098

ABSTRACT

Enhanced salt weathering resulting from global warming and increasing environmental pollution is endangering the survival of stone monuments and artworks. To mitigate the effects of these deleterious processes, numerous conservation treatments have been applied that, however, show limited efficacy. Here we present a novel, environmentally friendly, bacterial self-inoculation approach for the conservation of stone, based on the isolation of an indigenous community of carbonatogenic bacteria from salt damaged stone, followed by their culture and re-application back onto the same stone. This method results in an effective consolidation and protection due to the formation of an abundant and exceptionally strong hybrid cement consisting of nanostructured bacterial CaCO3 and bacterially derived organics, and the passivating effect of bacterial exopolymeric substances (EPS) covering the substrate. The fact that the isolated and identified bacterial community is common to many stone artworks may enable worldwide application of this novel conservation methodology.Salt weathering enhanced by global warming and environmental pollution is increasingly threatening stone monuments and artworks. Here, the authors present a bacterial self-inoculation approach with indigenous carbonatogenic bacteria and find that this technique consolidates and protects salt damaged stone.


Subject(s)
Architecture , Calcium Carbonate/metabolism , Environmental Pollution , Global Warming , Myxococcus xanthus/metabolism , Bacteria/metabolism
13.
Environ Sci Technol ; 51(1): 328-336, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27983815

ABSTRACT

In order to evaluate the organic phosphorus (OP) and pyrophosphate (PyroP) cycle and their fate in the environment, it is critical to understand the effects of mineral interfaces on the reactivity of adsorption and precipitation of OP and PyroP. Here, in situ atomic force microscopy (AFM) is used to directly observe the kinetics of coupled dissolution-precipitation on cleaved (001) surfaces of brucite [Mg(OH)2] in the presence of phytate, glucose-6-phosphate (G6P) and pyrophosphate, respectively. AFM results show that the relative order of contribution to mineral surface adsorption and precipitation is phytate > pyrophosphate > G6P under the same solution conditions and can be quantified by the induction time of OP/PyroP-Mg nucleation in a boundary layer at the brucite-water interface. Calculations of solution speciation during brucite dissolution in the presence of phytate or pyrophosphate at acidic pH conditions show that the solutions may reach supersaturation with respect to Mg5H2Phytate.6H2O as a Mg-phytate phase or Mg2P2O7 as a Mg-pyrophosphate phase that becomes thermodynamically stable before equilibrium with brucite is reached. This is consistent with AFM dynamic observations for the new phase formations on brucite. Direct nanoscale observations of the transformation of adsorption/complexation-surface precipitation, combined with spectroscopic characterizations and species simulations may improve the mechanistic understanding of organophosphate and pyrophosphate sequestration by mineral replacement reactions through a mechanism of coupled dissolution-precipitation occurring at mineral-solution interfaces in the environment.


Subject(s)
Diphosphates , Magnesium Hydroxide , Adsorption , Microscopy, Atomic Force , Organophosphates
14.
J Struct Biol ; 196(2): 260-287, 2016 11.
Article in English | MEDLINE | ID: mdl-27620641

ABSTRACT

Recent research has shown that biominerals and their biomimetics (i) typically form via an amorphous precursor phase, and (ii) commonly display a nanogranular texture. Apparently, these two key features are closely related, underlining the fact that the formation of biominerals and their biomimetics does not necessarily follow classical crystallization routes, and leaves a characteristic nanotextural imprint which may help to disclose their origins and formation mechanisms. Here we present a general overview of the current theories and models of nonclassical crystallization and their applicability for the advance of our current understanding of biomineralization and biomimetic mineralization. We pay particular attention to the link between nonclassical crystallization routes and the resulting nanogranular textures of biomimetic CaCO3 mineral structures. After a general introductory section, we present an overview of classical nucleation and crystal growth theories and their limitations. Then, we introduce the Ostwald's step rule as a general framework to explain nonclassical crystallization. Subsequently, we describe nonclassical crystallization routes involving stable prenucleation clusters, dense liquid and solid amorphous precursor phases, as well as current nonclassical crystal growth models. The latter include oriented attachment, mesocrystallization and the new model based on the colloidal growth of crystals via attachment of amorphous nanoparticles. Biomimetic examples of nanostructured CaCO3 minerals formed via these nonclassical routes are presented which help us to show that colloid-mediated crystal growth can be regarded as a wide-spread growth mechanism. Implications of these observations for the advance in the current understanding on the formation of biomimetic materials and biominerals are finally outlined.


Subject(s)
Colloids , Minerals/metabolism , Nanoparticles/chemistry , Biomimetics/methods , Calcium Carbonate/metabolism , Crystallization , Minerals/chemistry , Nanoparticles/metabolism
15.
J Struct Biol ; 196(2): 244-259, 2016 11.
Article in English | MEDLINE | ID: mdl-27456365

ABSTRACT

A distinct nanogranular fine structure is shared by a wealth of biominerals from several species, classes and taxa. This nanoscopic organization affects the properties and behavior of the biogenic ceramic material and confers on them attributes that are essential to their function. We present a set of structure-relationship properties that are rooted in the nanogranular organization and we propose that they rest on a common pathway of formation, a colloid-driven and hence nonclassical mode of crystallization. With this common modus operandi, we reveal the most fundamental and wide spread process-structure-property relationship in biominerals. With the recent increase in our understanding of nonclassical crystallization in vitro and in vivo, this significant process-structure-property relationship will serve as a source for new design approaches of bio-inspired materials.


Subject(s)
Minerals/metabolism , Nanoparticles/chemistry , Animals , Calcification, Physiologic , Colloids , Crystallization , Minerals/chemistry
16.
Langmuir ; 32(20): 5183-94, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27149182

ABSTRACT

Nanolimes are alcohol dispersions of Ca(OH)2 nanoparticles used in the conservation of cultural heritage. Although it was believed that Ca(OH)2 particles were inert when dispersed in short-chain alcohols, it has been recently shown that they can undergo transformation into calcium alkoxides. Little is known, however, about the mechanism and kinetics of such a phase transformation as well as its effect on the performance of nanolimes. Here we show that Ca(OH)2 particles formed after lime slaking react with ethanol and isopropanol and partially transform (fractional conversion, α up to 0.08) into calcium ethoxide and isopropoxide, respectively. The transformation shows Arrhenius behavior, with apparent activation energy Ea of 29 ± 4 and 37 ± 6 kJ mol(-1) for Ca-ethoxide and Ca-isopropoxide conversion, respectively. High resolution transmission electron microscopy analyses of reactant and product phases show that the alkoxides replace the crystalline structure of Ca(OH)2 along specific [hkl] directions, preserving the external hexagonal (platelike) morphology of the parent phase. Textural and kinetic results reveal that this pseudomorphic replacement involves a 3D diffusion-controlled deceleratory advancement of the reaction front. The results are consistent with an interface-coupled dissolution-precipitation replacement mechanism. Analysis of the carbonation of Ca(OH)2 particles with different degree of conversion into Ca-ethoxide (α up to 0.08) and Ca-isopropoxide (α up to 0.04) exposed to air (20 °C, 80% relative humidity) reveals that Ca-alkoxides significantly reduce the rate of transformation into cementing CaCO3 and induce the formation of metastable vaterite, as opposed to stable calcite which forms in untransformed Ca(OH)2 samples. Similar effects are obtained when a commercial nanolime partially transformed into Ca-ethoxide is subjected to carbonation. Such effects may hamper/delay the strengthening or consolidation effects of nanolimes, thus having important implications in the conservation of cultural heritage.

17.
Environ Sci Technol ; 50(1): 259-68, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26636475

ABSTRACT

Esters of phosphoric acid constitute a large fraction of the total organic phosphorus (OP) in the soil environment and, thus, play an important role in the global phosphorus cycle. These esters, such as glucose-6-phosphate (G6P), exhibit unusual reactivity toward various mineral particles in soils, especially those containing calcite. Many important processes of OP transformation, including adsorption, hydrolysis, and precipitation, occur primarily at mineral-fluid interfaces, which ultimately governs the fate of organophosphates in the environment. However, little is known about the kinetics of specific mineral-surface-induced adsorption and precipitation of organophosphates. Here, by using in situ atomic-force microscopy (AFM) to visualize the dissolution of calcite (1014) faces, we show that the presence of G6P results in morphology changes of etch pits from the typical rhombohedral to a fan-shaped form. This can be explained by a site-selective mechanism of G6P-calcite surface interactions that stabilize the energetically unfavorable (0001) or (0112) faces through step-specific adsorption of G6P. Continuous dissolution at calcite (1014)-water interfaces caused a boundary layer at the calcite-water interface to become supersaturated with respect to a G6P-Ca phase that then drives the nucleation and growth of a G6P-Ca precipitate. Furthermore, after the introduction of the enzyme alkaline phosphatase (AP), the precipitates were observed to contain a mixture of components associated with G6P-Ca, amorphous calcium phosphate (ACP)-hydroxyapatite (HAP) and dicalcium phosphate dihydrate (DCPD). These direct dynamic observations of the transformation of adsorption- and complexation-surface precipitation and enzyme-mediated pathways may improve the mechanistic understanding of the mineral-interface-induced organophosphate sequestration in the soil environment.


Subject(s)
Calcium Carbonate/chemistry , Microscopy, Atomic Force/methods , Organophosphates/chemistry , Soil Pollutants/chemistry , Water/chemistry , Chemical Precipitation , Organophosphates/analysis , Soil Pollutants/analysis
18.
Environ Sci Technol ; 49(7): 4184-92, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25763812

ABSTRACT

Adsorption and subsequent immobilization of orthophosphate on iron oxides is of considerable importance in soil fertility and eutrophication studies. Here, in situ atomic force microscopy (AFM) has been used to probe the interaction of phosphate-bearing solutions with goethite, α-FeOOH, (010) cleavage surfaces. During the dissolution of goethite we observed simultaneous nucleation of nanoparticles (1.0-3.0 nm in height) of iron phosphate (Fe-P) phases at the earliest nucleation stages, subsequent aggregation to form secondary particles (about 6.0 nm in height) and layered precipitates under various pH values and ionic strengths relevant to acid soil solution conditions. The heterogeneous nucleation rates of Fe-P precipitates at phosphate concentrations ranging from 5.0 to 50.0 mM were quantitatively defined. Enhanced goethite dissolution in the presence of high concentration NaCl or AlCl3 leads to a rapid increase in Fe-P nucleation rates, whereas low concentration MgCl2 inhibits goethite dissolution, this in turn influences Fe-P nucleation. Moreover, kinetic data analyses show that low concentrations of citrate caused an increase in the nucleation rate of Fe-P phases. However, at higher concentrations of citrate, nucleation acceleration was reversed with much longer induction times to form Fe-P nuclei. These in situ observations may improve the mechanistic understanding of processes resulting in phosphate immobilization by goethite-rich acid soils in the presence of various inorganic and organic additive molecules.


Subject(s)
Iron Compounds/chemistry , Minerals/chemistry , Models, Chemical , Phosphates/analysis , Soil Pollutants/analysis , Adsorption , Chemical Precipitation , Citrates/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Atomic Force , Osmolar Concentration , Phosphates/chemistry , Soil/chemistry , Soil Pollutants/chemistry , Solutions , Surface Properties
19.
Phys Chem Chem Phys ; 16(17): 7772-85, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24643252

ABSTRACT

Classical molecular dynamics simulations of several aqueous alkali halide salt solutions have been used to determine the effect of electrolytes on the structure of water and the hydration properties of calcium ions. Compared with the simulations of Ca(2+) ions in pure liquid water, the frequency of water exchange in the first hydration shell of calcium, which is a fundamental process in controlling the reactivity of calcium(ii) aqua-ions, is drastically reduced in the presence of other electrolytes in solution. The strong stabilization of the hydration shell of Ca(2+) occurs not only when the halide anions are directly coordinated to calcium, but also when the alkali and halide ions are placed at or outside the second coordination shell of Ca(2+), suggesting that the reactivity of the first solvation shell of the calcium ion can be influenced by the specific affinity of other ions in solution for the water molecules coordinated to Ca(2+). Analysis of the hydrogen-bonded structure of water in the vicinity of the calcium ion shows that the average number of hydrogen bonds per water molecules, which is 1.8 in pure liquid water, decreases as the concentration of alkali-halide salts in solution increases, and that the temporal fluctuations of hydrogen bonds are significantly larger than those obtained for Ca(2+) in pure liquid water. This effect has been explained in terms of the dynamics of reorganization of the O-H···X(-) (X = F, Cl and Br) hydrogen bond. This work shows the importance of solution composition in determining the hydrogen-bonding network and ligand-exchange dynamics around metal ions, both in solution and at the mineral-water interfaces, which in turn has implications for interactions occurring at the mineral-water interface, ultimately controlling the mobilization of ions in the environment as well as in industrial processes.

20.
Environ Sci Technol ; 47(23): 13469-76, 2013.
Article in English | MEDLINE | ID: mdl-24219361

ABSTRACT

Calcite, a widespread natural mineral at the Earth's surface, is well-known for its capacity to sequester various elements within its structure. Among these elements, selenium is important because of its high toxicity in natural systems and for human health. In the form of selenite (Se((IV))), selenium can be incorporated into calcite during growth. Our in situ atomic force microscopy observations of calcite surfaces during contact with selenium-bearing solutions demonstrate that another process of selenium trapping can occur under conditions in which calcite dissolves. Upon the injection of solutions containing selenium in two states of oxidation (either Se((IV)) or Se((VI))), precipitates were observed forming while calcite was still dissolving. In the presence of selenate (Se((VI))), the precipitates formed remained small during the observation period. When injecting selenite (Se((IV))), the precipitates grew significantly and were identified as CaSeO3·H2O, based on SEM observations, Raman spectroscopy, and thermodynamic calculations. An interpretation is proposed where the dissolution of calcite increases the calcium concentration in a thin boundary layer in contact with the surface, allowing the precipitation of a selenium phase. This process of dissolution-precipitation provides a new mechanism for selenium sequestration and extends the range of thermodynamic conditions under which such a process is efficient.


Subject(s)
Calcium Carbonate/chemistry , Selenium/chemistry , Environmental Restoration and Remediation , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Oxidation-Reduction , Spectrum Analysis, Raman , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...