Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 6(2): 143-61, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12045001

ABSTRACT

New medical imaging modalities offering multi-valued data, such as phase contrast MRA and diffusion tensor MRI, require general representations for the development of automated algorithms. In this paper we propose a unified framework for the registration of medical volumetric multi-valued data using local matching. The paper extends the usual concept of similarity between two pieces of data to be matched, commonly used with scalar (intensity) data, to the general tensor case. Our approach to registration is based on a multiresolution scheme, where the deformation field estimated in a coarser level is propagated to provide an initial deformation in the next finer one. In each level, local matching of areas with a high degree of local structure and subsequent interpolation are performed. Consequently, we provide an algorithm to assess the amount of structure in generic multi-valued data by means of gradient and correlation computations. The interpolation step is carried out by means of the Kriging estimator, which provides a novel framework for the interpolation of sparse vector fields in medical applications. The feasibility of the approach is illustrated by results on synthetic and clinical data.


Subject(s)
Brain/anatomy & histology , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Models, Neurological , Algorithms , Computer Simulation , Diffusion , Humans , Matched-Pair Analysis , Models, Anatomic , Sensitivity and Specificity
2.
Med Phys ; 28(12): 2551-60, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11797960

ABSTRACT

In this report we evaluate an image registration technique that can improve the information content of intraoperative image data by deformable matching of preoperative images. In this study, pretreatment 1.5 tesla (T) magnetic resonance (MR) images of the prostate are registered with 0.5 T intraoperative images. The method involves rigid and nonrigid registration using biomechanical finite element modeling. Preoperative 1.5 T MR imaging is conducted with the patient supine, using an endorectal coil, while intraoperatively, the patient is in the lithotomy position with a rectal obturator in place. We have previously observed that these changes in patient position and rectal filling produce a shape change in the prostate. The registration of 1.5 T preoperative images depicting the prostate substructure [namely central gland (CG) and peripheral zone (PZ)] to 0.5 T intraoperative MR images using this method can facilitate the segmentation of the substructure of the gland for radiation treatment planning. After creating and validating a dataset of manually segmented glands from images obtained in ten sequential MR-guided brachytherapy cases, we conducted a set of experiments to assess our hypothesis that the proposed registration system can significantly improve the quality of matching of the total gland (TG), CG, and PZ. The results showed that the method statistically-significantly improves the quality of match (compared to rigid registration), raising the Dice similarity coefficient (DSC) from prematched coefficients of 0.81, 0.78, and 0.59 for TG, CG, and PZ, respectively, to 0.94, 0.86, and 0.76. A point-based measure of registration agreement was also improved by the deformable registration. CG and PZ volumes are not changed by the registration, indicating that the method maintains the biomechanical topology of the prostate. Although this strategy was tested for MRI-guided brachytherapy, the preliminary results from these experiments suggest that it may be applied to other settings such as transrectal ultrasound-guided therapy, where the integration of preoperative MRI may have a significant impact upon treatment planning and guidance.


Subject(s)
Image Processing, Computer-Assisted , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Biophysical Phenomena , Biophysics , Brachytherapy/methods , Humans , Magnetic Resonance Imaging/methods , Male , Prostate/pathology , Reproducibility of Results
3.
Signal Processing ; 81(10): 2243-2247, 2001 Oct.
Article in English | MEDLINE | ID: mdl-26005233

ABSTRACT

This paper describes a unified approach to the detection of point landmarks-whose neighborhoods convey discriminant information-including multidimensional scalar, vector, and higher-order tensor data. The method is based on the interpretation of generalized correlation matrices derived from the gradient of tensor functions, a probabilistic interpretation of point landmarks, and the application of tensor algebra. Results on both synthetic and real tensor data are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...