Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(11): e2309387, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38200672

ABSTRACT

Over the past decades, the development of nanoparticles (NPs) to increase the efficiency of clinical treatments has been subject of intense research. Yet, most NPs have been reported to possess low efficacy as their actuation is hindered by biological barriers. For instance, synovial fluid (SF) present in the joints is mainly composed of hyaluronic acid (HA). These viscous media pose a challenge for many applications in nanomedicine, as passive NPs tend to become trapped in complex networks, which reduces their ability to reach the target location. This problem can be addressed by using active NPs (nanomotors, NMs) that are self-propelled by enzymatic reactions, although the development of enzyme-powered NMs, capable of navigating these viscous environments, remains a considerable challenge. Here, the synergistic effects of two NMs troops, namely hyaluronidase NMs (HyaNMs, Troop 1) and urease NMs (UrNMs, Troop 2) are demonstrated. Troop 1 interacts with the SF by reducing its viscosity, thus allowing Troop 2 to swim more easily through the SF. Through their collective motion, Troop 2 increases the diffusion of macromolecules. These results pave the way for more widespread use of enzyme-powered NMs, e.g., for treating joint injuries and improving therapeutic effectiveness compared with traditional methods.


Subject(s)
Nanoparticles , Viscosity , Macromolecular Substances
2.
ACS Nano ; 17(8): 7180-7193, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37058432

ABSTRACT

Targeted drug delivery depends on the ability of nanocarriers to reach the target site, which requires the penetration of different biological barriers. Penetration is usually low and slow because of passive diffusion and steric hindrance. Nanomotors (NMs) have been suggested as the next generation of nanocarriers in drug delivery due to their autonomous motion and associated mixing hydrodynamics, especially when acting collectively as a swarm. Here, we explore the concept of enzyme-powered NMs designed as such that they can exert disruptive mechanical forces upon laser irradiation. The urease-powered motion and swarm behavior improve translational movement compared to passive diffusion of state-of-the-art nanocarriers, while optically triggered vapor nanobubbles can destroy biological barriers and reduce steric hindrance. We show that these motors, named Swarm 1, collectively displace through a microchannel blocked with type 1 collagen protein fibers (barrier model), accumulate onto the fibers, and disrupt them completely upon laser irradiation. We evaluate the disruption of the microenvironment induced by these NMs (Swarm 1) by quantifying the efficiency by which a second type of fluorescent NMs (Swarm 2) can move through the cleared microchannel and be taken up by HeLa cells at the other side of the channel. Experiments showed that the delivery efficiency of Swarm 2 NMs in a clean path was increased 12-fold in the presence of urea as fuel compared to when no fuel was added. When the path was blocked with the collagen fibers, delivery efficiency dropped considerably and only depicted a 10-fold enhancement after pretreatment of the collagen-filled channel with Swarm 1 NMs and laser irradiation. The synergistic effect of active motion (chemically propelled) and mechanical disruption (light-triggered nanobubbles) of a biological barrier represents a clear advantage for the improvement of therapies which currently fail due to inadequate passage of drug delivery carriers through biological barriers.


Subject(s)
Drug Carriers , Drug Delivery Systems , Humans , HeLa Cells
3.
J Inorg Biochem ; 203: 110920, 2020 02.
Article in English | MEDLINE | ID: mdl-31760232

ABSTRACT

Four ternary metal-complexes with Cu(II) or Zn(II), 2,6-pyridine-dicarboxylate (pdc) or glycyl-glycinate (GG) and the synthetic nucleoside 9-(2-hydroxyethyl)adenine (9heade) have been synthesized and studied by single-crystal X-ray diffraction and other physical methods. Relevant supramolecular assemblies found in the solid state structures have been further studied using density functional theory (DFT) calculations. In addition, the energetic features of the non-covalent interactions as well as the cooperativity effects have been calculated and characterized using the non-covalent interaction plot computational tool. Compounds trans-[Cu(pdc)(9heade)(H2O)2]·3H2O (1a) and [Cu(pdc)(9heade)(H2O)]·H2O (1b), trans-[Zn(pdc)(9heade)(H2O)2] (2), share the same molecular recognition pattern consisting in the cooperation of the metal-N7(9heade) bond and an interligand (9heade)N6-H···O(pdc) interaction, regardless of the nature of the metal, the coordination environment and the water content. At a supramolecular level, these compounds exhibit pairs of complex molecules linked by H-bonds and interesting anion-π/π-π/π-anion assemblies (in 1a and 1b) or the unprecedented π-π interactions (in 2), involving the purine moieties or the exocyclic -6NH2 purine groups, respectively. Compound 3, {[Cu(GG)(9heade)(H2O)·Cu(GG)(µ2-9heade)]·8H2O}n, consists in asymmetric dinuclear complex units (Cu···Cu 7.83 Å) that connect with adjacent ones by pairs of very weak Cu-O(carboxylate) bonds (Cu···Cu 3.81 Å) building a polymeric chain. The supramolecular transition from a single molecule to dinuclear units and finally a polymeric chain is also observed in the electron paramagnetic resonance spectra and discussed from a structural point of view as well as by DFT calculations. The unprecedented N7 and µ-N7,O(ol) metal binding patterns of 9heade differs from that recently reported (µ-N1,N7) in a Cd(II) polymer.


Subject(s)
Adenosine/chemistry , Chelating Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Copper/chemistry , Organometallic Compounds/chemical synthesis , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...