Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(2): 1220-1235, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36524712

ABSTRACT

In order to use classical molecular dynamics to complement experiments accurately, it is important to use robust descriptions of the system. The interactions between biomolecules, like aspartic and glutamic acid, and dissolved ions are often studied using standard biomolecular force-fields, where the interactions between biomolecules and cations are often not parameterized explicitly. In this study, we have employed metadynamics simulations to investigate different interactions of Ca with aspartic and glutamic acid and constructed the free energy profiles of Ca2+-carboxylate association. Starting from a generally accepted, AMBER-based force field, the association was substantially over and under-estimated, depending on the choice of water model (TIP3P and SPC/fw, respectively). To rectify this discrepancy, we have replaced the default calcium parameters. Additionally, we modified the σij value in the hetero-atomic Lennard-Jones interaction by 0.5% to further improve the interaction between Ca and carboxylate, based on comparison with the experimentally determined association constant for Ca with the carboxylate group of L-aspartic acid. The corrected description retrieved the structural properties of the ion pair in agreement with the original biomolecule - Ca2+ interaction in AMBER, whilst also producing an association constant comparable to experimental observations. This refined force field was then used to investigate the interactions between amino acids, calcium and carbonate ions during biogenic and biomimetic calcium carbonate mineralisation.


Subject(s)
Amino Acids , Molecular Dynamics Simulation , Amino Acids/chemistry , Calcium/chemistry , Glutamic Acid , Cations , Water/chemistry , Carboxylic Acids
2.
Cryst Growth Des ; 21(3): 1576-1590, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33762898

ABSTRACT

The effect of stoichiometry on the new formation and subsequent growth of CaCO3 was investigated over a large range of solution stoichiometries (10-4 < r aq < 104, where r aq = {Ca2+}:{CO3 2-}) at various, initially constant degrees of supersaturation (30 < Ωcal < 200, where Ωcal = {Ca2+}{CO3 2-}/K sp), pH of 10.5 ± 0.27, and ambient temperature and pressure. At r aq = 1 and Ωcal < 150, dynamic light scattering (DLS) showed that ion adsorption onto nuclei (1-10 nm) was the dominant mechanism. At higher supersaturation levels, no continuum of particle sizes is observed with time, suggesting aggregation of prenucleation clusters into larger particles as the dominant growth mechanism. At r aq ≠ 1 (Ωcal = 100), prenucleation particles remained smaller than 10 nm for up to 15 h. Cross-polarized light in optical light microscopy was used to measure the time needed for new particle formation and growth to at least 20 µm. This precipitation time depends strongly and asymmetrically on r aq. Complementary molecular dynamics (MD) simulations confirm that r aq affects CaCO3 nanoparticle formation substantially. At r aq = 1 and Ωcal ≫ 1000, the largest nanoparticle in the system had a 21-68% larger gyration radius after 20 ns of simulation time than in nonstoichiometric systems. Our results imply that, besides Ωcal, stoichiometry affects particle size, persistence, growth time, and ripening time toward micrometer-sized crystals. Our results may help us to improve the understanding, prediction, and formation of CaCO3 in geological, industrial, and geo-engineering settings.

3.
J Phys Chem C Nanomater Interfaces ; 123(44): 26895-26903, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31737161

ABSTRACT

The dehydration of cations is generally accepted as the rate-limiting step in many processes. Molecular dynamics (MD) can be used to investigate the dynamics of water molecules around cations, and two different methods exist to obtain trajectory-based water dehydration frequencies. Here, these two different post-processing methods (direct method versus survival function) have been implemented to obtain calcium dehydration frequencies from a series of trajectories obtained using a range of accepted force fields. None of the method combinations reproduced the commonly accepted experimental water exchange frequency of 10-8.2 s-1. Instead, our results suggest much faster water dynamics, comparable with more accurate ab initio MD simulations and with experimental values obtained using neutron scattering techniques. We obtained the best agreement using the survival function method to characterize the water dynamics, and we show that different method combinations significantly affect the outcome. Our work strongly suggests that the fast water exchange kinetics around the calcium ions is not rate-limiting for reactions involving dissolved/solvated calcium. Our results further suggest that, for alkali and most of the earth alkali metals, mechanistic rate laws for growth, dissolution, and adsorption, which are based on the principle of rate-limiting cation dehydration, need careful reconsideration.

4.
Phys Chem Chem Phys ; 17(34): 22377-88, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26247336

ABSTRACT

Classical molecular dynamics (MD) simulations have been employed to study the interaction of the saccharides glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc) with the (0001) and (011̄0) surfaces of the mineral hydroxyapatite (HAP). GlcA and GalNAc are the two constituent monosaccharides of the glycosaminoglycan chondroitin sulfate, which is commonly found in bone and cartilage and has been implicated in the modulation of the hydroxyapatite biomineralization process. MD simulations of the mineral surfaces and the saccharides in the presence of solvent water allowed the calculation of the adsorption energies of the saccharides on the HAP surfaces. The calculations show that GalNAc interacts with HAP principally through the sulfate and the carbonyl of acetyl amine groups, whereas the GlcA interacts primarily through the carboxylate functional groups. The mode and strength of the interaction depends on the orientation of the saccharide with respect to the surface and the level of disruption of the layer of water competing with the saccharide for adsorption sites on the HAP surface, suggesting that chondroitin 4-sulfate binds to the layer of solvent water rather than to HAP.


Subject(s)
Acetylgalactosamine/chemistry , Chondroitin Sulfates/chemistry , Durapatite/chemistry , Glucuronic Acid/chemistry , Molecular Dynamics Simulation , Water/chemistry , Adsorption , Carbohydrate Conformation , Monosaccharides/chemistry , Surface Properties
5.
Chemistry ; 18(32): 9828-33, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22744724

ABSTRACT

We have calculated the concentrations of Mg in the bulk and surfaces of aragonite CaCO(3) in equilibrium with aqueous solution, based on molecular dynamics simulations and grand-canonical statistical mechanics. Mg is incorporated in the surfaces, in particular in the (001) terraces, rather than in the bulk of aragonite particles. However, the total Mg content in the bulk and surface of aragonite particles was found to be too small to account for the measured Mg/Ca ratios in corals. We therefore argue that most Mg in corals is either highly metastable in the aragonite lattice, or is located outside the aragonite phase of the coral skeleton, and we discuss the implications of this finding for Mg/Ca paleothermometry.


Subject(s)
Anthozoa/chemistry , Calcium Carbonate/chemistry , Calcium/chemistry , Magnesium/chemistry , Minerals/chemistry , Solutions/chemistry , Animals , Crystallization , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...