Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 15(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36013673

ABSTRACT

Cermet coatings deposited using high-velocity oxy-fuel (HVOF) are widely used due to their excellent wear and corrosion resistance. The new agglomeration-rapid sintering method is an excellent candidate for the preparation of WC-Co-Cr feedstock powders. In this study, four different WC-10Co-4Cr feedstock powders containing WC particles of different sizes were prepared by the new agglomeration-rapid sintering method and deposited on steel substrates using the HVOF technique. The microstructures and mechanical properties of the coatings were investigated using scanning electron microscopy, X-ray diffraction, nanoindentation, and Vickers indentation. The through-thickness residual stress profiles of the coatings and substrate materials were determined using neutron diffraction. We found that the microstructures and mechanical properties of the coatings were strongly dependent on the WC particle size. Decarburization and anisotropic mechanical behaviors were exhibited in the coatings, especially in the nanostructured coating. The coatings containing nano- and medium-sized WC particles were dense and uniform, with a high Young's modulus and hardness and the highest fracture toughness among the four coatings. As the WC particle size increased, the compressive stress in the coating increased considerably. Knowledge of these relationships enables the optimization of feedstock powder design to achieve superior mechanical performance of coatings in the future.

2.
Materials (Basel) ; 14(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34947219

ABSTRACT

A series of Al2O3-Al2TiO5 ceramic composites with different Al2TiO5 contents (10 and 40 vol.%) fabricated at different sintering temperatures (1450 and 1550 °C) was studied in the present work. The microstructure, crystallite structure, and through-thickness residual stress of these composites were investigated by scanning electron microscopy, X-ray diffraction, time-of-flight neutron diffraction, and Rietveld analysis. Lattice parameter variations and individual peak shifts were analyzed to calculate the mean phase stresses in the Al2O3 matrix and Al2TiO5 particulates as well as the peak-specific residual stresses for different hkl reflections of each phase. The results showed that the microstructure of the composites was affected by the Al2TiO5 content and sintering temperature. Moreover, as the Al2TiO5 grain size increased, microcracking occurred, resulting in decreased flexure strength. The sintering temperatures at 1450 and 1550 °C ensured the complete formation of Al2TiO5 during the reaction sintering and the subsequent cooling of Al2O3-Al2TiO5 composites. Some decomposition of AT occurred at the sintering temperature of 1550 °C. The mean phase residual stresses in Al2TiO5 particulates are tensile, and those in the Al2O3 matrix are compressive, with virtually flat through-thickness residual stress profiles in bulk samples. Owing to the thermal expansion anisotropy in the individual phase, the sign and magnitude of peak-specific residual stress values highly depend on individual hkl reflection. Both mean phase and peak-specific residual stresses were found to be dependent on the Al2TiO5 content and sintering temperature of Al2O3-Al2TiO5 composites, since the different developed microstructures can produce stress-relief microcracks. The present work is beneficial for developing Al2O3-Al2TiO5 composites with controlled microstructure and residual stress, which are crucial for achieving the desired thermal and mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL