Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(11): e0224661, 2019.
Article in English | MEDLINE | ID: mdl-31725745

ABSTRACT

Rotator cuff tear is one of the most common shoulder diseases. Rotator cuff augmentation (RCA) is trying to solve the high retear failure percentage after the surgery procedures (20-90%). The ideal augmentation patch must provide a temporal mechanical support during the healing process. In this work, we proposed a simple method for the fabrication of synthetic RCA patches. This method combines the use of electrospraying to produce poly-L-lactic-co-ε-caprolactone (PLC) films in an organogel form and electrospinning to produce poly(lactic) acid (PLA) nanofibers. The device consists in a combination of layers, creating a multilayered construct, enabling the possibility of tuning its mechanical properties and thickness. Besides, both techniques are simple to escalate for industrial production. A complete characterization has been performed to optimize the involved number of layers and production time of PLC films and PLA nanofibers fabrication, obtaining a final optimal configuration for RCA devices. Structural, mechanical and suture properties were evaluated. Also, the possibility of surface functionalization to improve the bioactivity of the scaffold was studied, adding aligned electrospun PLA nanofibers on the surface of the device to mimic the natural tendon topography. Surface modification was characterized by culturing adult normal human dermal fibroblasts. Lack of toxicity was detected for material presented, and cell alignment shape orientation guided by aligned fibers, mimicking tendon structure, was obtained. Cell proliferation and protein production were also evaluated.


Subject(s)
Biomimetic Materials/chemistry , Fibroblasts/metabolism , Nanofibers/chemistry , Polyesters/chemistry , Rotator Cuff , Tissue Scaffolds/chemistry , Humans , Materials Testing , Rotator Cuff Injuries/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...