Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Games Health J ; 8(6): 414-422, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31347931

ABSTRACT

Objective: In this intervention study, we investigated the benefits of nonaction videogames on measures of selective attention and visuospatial working memory (WM) in young adults. Materials and Methods: Forty-eight young adults were randomly assigned to the experimental group or to the active control group. The experimental group played 10 nonaction adaptive videogames selected from Lumosity, whereas the active control group played two nonadaptive simulation-strategy games (SimCity and The Sims). Participants in both groups completed 15 training sessions of 30 minutes each. The training was conducted in small groups. All the participants were tested individually before and after training to assess possible transfer effects to selective attention, using a Cross-modal Oddball task, inhibition with the Stroop task, and visuospatial WM enhancements with the Corsi blocks task. Results: Participants improved videogame performance across the training sessions. The results of the transfer tasks show that the two groups benefited similarly from game training. They were less distracted and improved visuospatial WM. Conclusion: Overall, there was no significant interaction between group (group trained with adaptive nonaction videogames and the active control group that played simulation games) and session (pre- and post-assessment). As we did not have a passive nonintervention control group, we cannot conclude that adaptive nonaction videogames had a positive effect, because some external factors might account for the pre- and post-test improvements observed in both groups.


Subject(s)
Attention/physiology , Memory, Short-Term/physiology , Video Games , Adolescent , Adult , Cognition/physiology , Female , Humans , Inhibition, Psychological , Male , Young Adult
2.
Front Aging Neurosci ; 9: 354, 2017.
Article in English | MEDLINE | ID: mdl-29163136

ABSTRACT

Video game training with older adults potentially enhances aspects of cognition that decline with aging and could therefore offer a promising training approach. Although, previous published studies suggest that training can produce transfer, many of them have certain shortcomings. This randomized controlled trial (RCT; Clinicaltrials.gov ID: NCT02796508) tried to overcome some of these limitations by incorporating an active control group and the assessment of motivation and expectations. Seventy-five older volunteers were randomly assigned to the experimental group trained for 16 sessions with non-action video games from Lumosity, a commercial platform (http://www.lumosity.com/) or to an active control group trained for the same number of sessions with simulation strategy games. The final sample included 55 older adults (30 in the experimental group and 25 in the active control group). Participants were tested individually before and after training to assess working memory (WM) and selective attention and also reported their perceived improvement, motivation and engagement. The results showed improved performance across the training sessions. The main results were: (1) the experimental group did not show greater improvements in measures of selective attention and working memory than the active control group (the opposite occurred in the oddball task); (2) a marginal training effect was observed for the N-back task, but not for the Stroop task while both groups improved in the Corsi Blocks task. Based on these results, one can conclude that training with non-action games provide modest benefits for untrained tasks. The effect is not specific for that kind of training as a similar effect was observed for strategy video games. Groups did not differ in motivation, engagement or expectations.

3.
JMIR Res Protoc ; 6(1): e8, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-28119279

ABSTRACT

BACKGROUND: Neuroplasticity-based approaches seem to offer promising ways of maintaining cognitive health in older adults and postponing the onset of cognitive decline symptoms. Although previous research suggests that training can produce transfer effects, this study was designed to overcome some limitations of previous studies by incorporating an active control group and the assessment of training expectations. OBJECTIVE: The main objectives of this study are (1) to evaluate the effects of a randomized computer-based intervention consisting of training older adults with nonaction video games on brain and cognitive functions that decline with age, including attention and spatial working memory, using behavioral measures and electrophysiological recordings (event-related potentials [ERPs]) just after training and after a 6-month no-contact period; (2) to explore whether motivation, engagement, or expectations might account for possible training-related improvements; and (3) to examine whether inflammatory mechanisms assessed with noninvasive measurement of C-reactive protein in saliva impair cognitive training-induced effects. A better understanding of these mechanisms could elucidate pathways that could be targeted in the future by either behavioral or neuropsychological interventions. METHODS: A single-blinded randomized controlled trial with an experimental group and an active control group, pretest, posttest, and 6-month follow-up repeated measures design is used in this study. A total of 75 cognitively healthy older adults were randomly distributed into experimental and active control groups. Participants in the experimental group received 16 1-hour training sessions with cognitive nonaction video games selected from Lumosity, a commercial brain training package. The active control group received the same number of training sessions with The Sims and SimCity, a simulation strategy game. RESULTS: We have recruited participants, have conducted the training protocol and pretest assessments, and are currently conducting posttest evaluations. The study will conclude in the first semester of 2017. Data analysis will take place during 2017. The primary outcome is transfer of benefit from training to attention and working memory functions and the neural mechanisms underlying possible cognitive improvements. CONCLUSIONS: We expect that mental stimulation with video games will improve attention and memory both at the behavioral level and in ERP components promoting brain and mental health and extending independence among elderly people by avoiding the negative personal and economic consequences of long-term care. TRIAL REGISTRATION: Clinicaltrials.gov NCT02796508; https://clinicaltrials.gov/ct2/show/NCT02796508 (archived by WebCite at http://www.webcitation.org/6nFeKeFNB).

SELECTION OF CITATIONS
SEARCH DETAIL
...