Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 21: 1473-1486, 2023.
Article in English | MEDLINE | ID: mdl-36851916

ABSTRACT

Human complement is the first line of defence against invading pathogens and is involved in tissue homeostasis. Complement-targeted therapies to treat several diseases caused by a dysregulated complement are highly desirable. Despite huge efforts invested in their development, only very few are currently available, and a deeper understanding of the numerous interactions and complement regulation mechanisms is indispensable. Two important complement regulators are human Factor H (FH) and Factor H-related protein 1 (FHR1). MFHR1 and MFHR13, two promising therapeutic candidates based on these regulators, combine the dimerization and C5-regulatory domains of FHR1 with the central C3-regulatory and cell surface-recognition domains of FH. Here, we used AlphaFold2 to model the structure of these two synthetic regulators. Moreover, we used AlphaFold-Multimer (AFM) to study possible interactions of C3 fragments and membrane attack complex (MAC) components C5, C7 and C9 in complex with FHR1, MFHR1, MFHR13 as well as the best-known MAC regulators vitronectin (Vn), clusterin and CD59, whose experimental structures remain undetermined. AFM successfully predicted the binding interfaces of FHR1 and the synthetic regulators with C3 fragments and suggested binding to C3. The models revealed structural differences in binding to these ligands through different interfaces. Additionally, AFM predictions of Vn, clusterin or CD59 with C7 or C9 agreed with previously published experimental results. Because the role of FHR1 as MAC regulator has been controversial, we analysed possible interactions with C5, C7 and C9. AFM predicted interactions of FHR1 with proteins of the terminal complement complex (TCC) as indicated by experimental observations, and located the interfaces in FHR11-2 and FHR14-5. According to AFM prediction, FHR1 might partially block the C3b binding site in C5, inhibiting C5 activation, and block C5b-7 complex formation and C9 polymerization, with similar mechanisms of action as clusterin and vitronectin. Here, we generate hypotheses and give the basis for the design of rational approaches to understand the molecular mechanism of MAC inhibition, which will facilitate the development of further complement therapeutics.

2.
Front Bioeng Biotechnol ; 10: 837965, 2022.
Article in English | MEDLINE | ID: mdl-35252145

ABSTRACT

The moss Physcomitrella is an interesting production host for recombinant biopharmaceuticals. Here we produced MFHR1, a synthetic complement regulator which has been proposed for the treatment of diseases associated to the complement system as part of human innate immunity. We studied the impact of different operation modes for the production process in 5 L stirred-tank photobioreactors. The total amount of recombinant protein was doubled by using fed-batch or batch compared to semi-continuous operation, although the maximum specific productivity (mg MFHR1/g FW) increased just by 35%. We proposed an unstructured kinetic model which fits accurately with the experimental data in batch and semi-continuous operation under autotrophic conditions with 2% CO2 enrichment. The model is able to predict recombinant protein production, nitrate uptake and biomass growth, which is useful for process control and optimization. We investigated strategies to further increase MFHR1 production. While mixotrophic and heterotrophic conditions decreased the MFHR1-specific productivity compared to autotrophic conditions, addition of the phytohormone auxin (NAA, 10 µM) to the medium enhanced it by 470% in shaken flasks and up to 230% and 260%, in batch and fed-batch bioreactors, respectively. Supporting this finding, the auxin-synthesis inhibitor L-kynurenine (100 µM) decreased MFHR1 production significantly by 110% and 580% at day 7 and 18, respectively. Expression analysis revealed that the MFHR1 transgene, driven by the Physcomitrella actin5 (PpAct5) promoter, was upregulated 16 h after NAA addition and remained enhanced over the whole process, whereas the auxin-responsive gene PpIAA1A was upregulated within the first 2 hours, indicating that the effect of auxin on PpAct5 promoter-driven expression is indirect. Furthermore, the day of NAA supplementation was crucial, leading to an up to 8-fold increase of MFHR1-specific productivity (0.82 mg MFHR1/g fresh weight, 150 mg accumulated over 7 days) compared to the productivity reported previously. Our findings are likely to be applicable to other plant-based expression systems to increase biopharmaceutical production and yields.

3.
Commun Biol ; 5(1): 152, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35194132

ABSTRACT

The complement system constitutes the innate defense against pathogens. Its dysregulation leads to diseases and is a critical determinant in many viral infections, e.g., COVID-19. Factor H (FH) is the main regulator of the alternative pathway of complement activation and could be a therapy to restore homeostasis. However, recombinant FH is not available. Engineered FH versions may be alternative therapeutics. Here, we designed a synthetic protein, MFHR13, as a multitarget complement regulator. It combines the dimerization and C5-regulatory domains of human FH-related protein 1 (FHR1) with the C3-regulatory and cell surface recognition domains of human FH, including SCR 13. In summary, the fusion protein MFHR13 comprises SCRs FHR11-2:FH1-4:FH13:FH19-20. It protects sheep erythrocytes from complement attack exhibiting 26 and 4-fold the regulatory activity of eculizumab and human FH, respectively. Furthermore, we demonstrate that MFHR13 and FHR1 bind to all proteins forming the membrane attack complex, which contributes to the mechanistic understanding of FHR1. We consider MFHR13 a promising candidate as therapeutic for complement-associated diseases.


Subject(s)
Blood Proteins/metabolism , Complement Activation , Complement Factor H/metabolism , Complement System Proteins/metabolism , Erythrocytes/metabolism , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Animals , Bryopsida/genetics , Bryopsida/metabolism , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Complement Membrane Attack Complex/metabolism , Humans , Models, Molecular , Pandemics/prevention & control , Protein Binding , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , SARS-CoV-2/physiology , Sheep
4.
Front Plant Sci ; 11: 610032, 2020.
Article in English | MEDLINE | ID: mdl-33391325

ABSTRACT

Recombinantly produced proteins are indispensable tools for medical applications. Since the majority of them are glycoproteins, their N-glycosylation profiles are major determinants for their activity, structural properties and safety. For therapeutical applications, a glycosylation pattern adapted to product and treatment requirements is advantageous. Physcomitrium patens (Physcomitrella, moss) is able to perform highly homogeneous complex-type N-glycosylation. Additionally, it has been glyco-engineered to eliminate plant-specific sugar residues by knock-out of the ß1,2-xylosyltransferase and α1,3-fucosyltransferase genes (Δxt/ft). Furthermore, Physcomitrella meets wide-ranging biopharmaceutical requirements such as GMP compliance, product safety, scalability and outstanding possibilities for precise genome engineering. However, all plants, in contrast to mammals, lack the capability to perform N-glycan sialylation. Since sialic acids are a common terminal modification on human N-glycans, the property to perform N-glycan sialylation is highly desired within the plant-based biopharmaceutical sector. In this study, we present the successful achievement of protein N-glycan sialylation in stably transformed Physcomitrella. The sialylation ability was achieved in a Δxt/ft moss line by stable expression of seven mammalian coding sequences combined with targeted organelle-specific localization of the encoded enzymes responsible for the generation of ß1,4-galactosylated acceptor N-glycans as well as the synthesis, activation, transport and transfer of sialic acid. Production of free (Neu5Ac) and activated (CMP-Neu5Ac) sialic acid was proven. The glycosidic anchor for the attachment of terminal sialic acid was generated by the introduction of a chimeric human ß1,4-galactosyltransferase gene under the simultaneous knock-out of the gene encoding the endogenous ß1,3-galactosyltransferase. Functional complex-type N-glycan sialylation was confirmed via mass spectrometric analysis of a stably co-expressed recombinant human protein.

5.
Zootaxa ; 4175(4): 377-389, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27811749

ABSTRACT

A reference 535 bp barcode sequence from a fragment of the mitochondrial gene cytochrome oxidase I (COI), acquired from specimens of An. neivai Howard, Dyar & Knab, 1913 from its type locality in Panama, was used as a tool for distinguishing this species from others in the subgenus Kerteszia. Comparisons with corresponding regions of COI between An. neivai and other species in the subgenus (An. bellator Dyar & Knab 1906, An. homunculus Komp 1937, An cruzii Dyar & Knab, 1908 and An. laneanus Corrêa & Cerqueira, 1944) produced K2P genetic distances of 8.3-12.6%, values well above those associated with intraspecific variation. In contrast, genetic distances among 55 specimens from five municipalities in the Colombian Pacific coastal state of Chocó were all within the range of 0-2.5%, with an optimized barcode threshold of 1.3%, the limit for unambiguous differentiation of An. neivai. Among specimens from the Chocó region, 18 haplotypes were detected, two of which were widely distributed over the municipalities sampled. The barcode sequence permits discrimination of An. neivai from sympatric species and indicates genetic variability within the species; aspects key to malaria surveillance and control as well as defining geographic distribution and dispersion patterns.


Subject(s)
Anopheles/genetics , DNA Barcoding, Taxonomic , Malaria, Falciparum/transmission , Animals , Anopheles/parasitology , Colombia , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Female , Genetic Variation/genetics , Male , Plasmodium falciparum
SELECTION OF CITATIONS
SEARCH DETAIL
...