Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Yeast ; 40(7): 265-275, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37170862

ABSTRACT

Debaryomyces hansenii is a halotolerant/halophilic yeast usually found in salty environments. The yeast accumulated sodium at high concentrations, which improved growth in salty media. In contrast, lithium was toxic even at low concentrations and its presence prevented cell proliferation. To analyse the responses to both cations, metabolite levels, enzymatic activities and gene expression were determined, showing that NaCl and LiCl trigger different cellular responses. At high concentrations of NaCl (0.5 or 1.5 M) cells accumulated higher amounts of the intermediate metabolites glyoxylate and malate and, at the same time, the levels of intracellular oxoglutarate decreased. Additionally, 0.5 M NaCl increased the activity of the enzymes isocitrate lyase and malate synthase involved in the synthesis of glyoxylate and malate respectively and decreased the activity of isocitrate dehydrogenase. Moreover, transcription of the genes coding for isocitrate lyase and malate synthase was activated by NaCl. Also, cells accumulated phosphate upon NaCl exposure. None of these effects was provoked when LiCl (0.1 or 0.3 M) was used instead of NaCl. Lithium induced accumulation of higher amounts of oxoglutarate and decreased the concentrations of glyoxylate and malate to non-detectable levels. Cells incubated with lithium also showed higher activity of the isocitrate dehydrogenase and neither increased isocitrate lyase and malate synthase activities nor the transcription of the corresponding genes. In summary, we show that sodium, but not lithium, up regulates the shunt of the glyoxylic acid in D. hansenii and we propose that this is an important metabolic adaptation to thrive in salty environments.


Subject(s)
Debaryomyces , Sodium , Sodium Chloride/pharmacology , Malate Synthase/genetics , Malate Synthase/metabolism , Isocitrate Lyase/genetics , Isocitrate Lyase/metabolism , Malates , Debaryomyces/metabolism , Saccharomyces cerevisiae/metabolism , Isocitrate Dehydrogenase/genetics , Carbon , Ketoglutaric Acids , Glyoxylates/metabolism
2.
J Fungi (Basel) ; 8(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36012861

ABSTRACT

The exploration of alternatives to the use of chemical preservatives in food is a topic that has attracted great attention. The implementation of regulations associated with the reduction of these elements directly affects the production of cured meat products, with the premise of looking for more "natural" alternatives. From a previously identified collection of 24 strains of Debaryomyces hansenii, isolated from dry meat products of the "Valle de los Pedroches" (Córdoba), a screening was carried out to determine which strains had inhibitory potential against a battery of fungi belonging to the genera Aspergillus, Penicillium, and Candida. After a series of general trials, four strains showing the greatest potential were selected by a streak inhibition assay performed at several concentrations of NaCl. The inhibitory activity of the selected D. hansenii strains was later evaluated by measuring their fungal antagonistic diffusible and volatile compound production following radial inhibition and mouth-to-mouth approaches, respectively. Growth aspects, sporulation, and morphology changes were also considered during these assays. The results support ideas already raised in previous studies, such as the presence of D. hanseniii could imply a reduction of pathogenic fungi in food. Autochthonous yeast strains inhibited not only the mycelial growth, but also sporulation, which strengthens the biocontrol activity of this yeast. Our results show that, under certain conditions, all tested D. hansenii strains were able to alter the growth/development of fungi, being especially evident in the cases of Penicillium expansum and Aspergillus niger. Finally, our research can facilitate the future comparison of results in this area, since we contributed to standardize the methodology described to date, we quantified the number of yeast cells and spores used during the experiments, we homogenized growth conditions for both, yeasts, and molds, and applied an image analyzer software to quantify the growth of the studied microorganisms in solid media.

3.
Int J Mol Sci ; 23(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35563275

ABSTRACT

Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.


Subject(s)
Candida albicans , Membrane Transport Proteins , Potassium , Antifungal Agents/metabolism , Candida albicans/metabolism , Cell Membrane/metabolism , Membrane Transport Proteins/metabolism , Potassium/metabolism , Saccharomyces cerevisiae/metabolism
4.
Microorganisms ; 9(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34361947

ABSTRACT

Debaryomyces hansenii yeast represents a promising target for basic and applied biotechnological research It is known that D. hansenii is abundant in sausages and dry-meat products, but information regarding its contribution to their characteristics is blurry and contradictory. The main goal in this review was to define the biological contribution of D. hansenii to the final features of these products. Depending on multiple factors, D. hansenii may affect diverse physicochemical characteristics of meat products. However, there is general agreement about the significant generation of volatile and aromatic compounds caused by the metabolic activities of this yeast, which consequently provide a tendency for improved consumer acceptance. We also summarize current evidence highlighting that it is not possible to predict what the results would be after the inoculation of a meat product with a selected D. hansenii strain without a pivotal previous study. The use of D. hansenii as a biocontrol agent and to manufacture new meat products by decreasing preservatives are examples of exploring research lines that will complement current knowledge and contribute to prepare new and more ecological products.

SELECTION OF CITATIONS
SEARCH DETAIL
...