Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 21(5): 1352-1365, 2023 05.
Article in English | MEDLINE | ID: mdl-36736831

ABSTRACT

BACKGROUND: Germline mutations in RUNX1 can cause a familial platelet disorder that may lead to acute myeloid leukemia, an autosomal dominant disorder characterized by moderate thrombocytopenia, platelet dysfunction, and a high risk of developing acute myeloid leukemia or myelodysplastic syndrome. Discerning the pathogenicity of novel RUNX1 variants is critical for patient management. OBJECTIVES: To extend the characterization of RUNX1 variants and evaluate their effects by transcriptome analysis. METHODS: Three unrelated patients with long-standing thrombocytopenia carrying heterozygous RUNX1 variants were included: P1, who is a subject with recent development of myelodysplastic syndrome, with c.802 C>T[p.Gln268∗] de novo; P2 with c.586A>G[p.Thr196Ala], a variant that segregates with thrombocytopenia and myeloid neoplasia in the family; and P3 with c.476A>G[p.Asn159Ser], which did not segregate with thrombocytopenia or neoplasia. Baseline platelet evaluations were performed. Ultrapure platelets were prepared for platelet transcriptome analysis. RESULTS: In P1 and P2, but not in P3, transcriptome analysis confirmed aberrant expression of genes recognized as RUNX1 targets. Data allowed grouping patients by distinct gene expression profiles, which were partitioned with clinical parameters. Functional studies and platelet mRNA expression identified alterations in the actin cytoskeleton, downregulation of GFI1B, defective GPVI downstream signaling, and reduction of alpha granule proteins, such as thrombospondin-1, as features likely implicated in thrombocytopenia and platelet dysfunction. CONCLUSION: Platelet phenotype, familial segregation, and platelet transcriptomics support the pathogenicity of RUNX1 variants p.Gln268∗ and p.Thr196Ala, but not p.Asn159Ser. This study is an additional proof of concept that platelet RNA analysis could be a tool to help classify pathogenic RUNX1 variants and identify novel RUNX1 targets.


Subject(s)
Blood Platelet Disorders , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Thrombocytopenia , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Germ-Line Mutation , Blood Platelet Disorders/complications , Thrombocytopenia/genetics , Thrombocytopenia/complications , Leukemia, Myeloid, Acute/genetics , Gene Expression Profiling , Germ Cells/metabolism , Mutation
2.
Sci Rep ; 7(1): 11684, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28916741

ABSTRACT

A series of calcium alginate composite hydrogels with several calcium chloride contents ranging from 3 to 18 wt.% with and without 0.1 wt.% of graphene oxide (GO) was prepared in order to study the effect of crosslinking and nanofilling on water diffusion and compression performance. Thus, for high crosslinker contents, these composite hydrogels exhibited ultrafast diffusion of liquid water and excellent compression properties as compared with control (0 wt.% GO and the same crosslinking). These remarkable results are produced due to calcium cations are able to crosslink alginate and also graphene oxide nanosheets to form large crosslinked GO networks inside the calcium alginate hydrogels. Besides, these crosslinked GO/calcium alginate networks present nanochannels, as confirmed by electron microscopy, able to improve significantly water diffusion. Thus, these composite materials are very promising for many industrial applications demanding low-cost hydrogels with improved mechanical and water diffusion properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...