Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Inorg Chem ; 63(17): 7735-7745, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38636105

ABSTRACT

To study the relationship between polymorphism and catalytic activities of lanthanide coordination polymers in the cycloaddition reactions of CO2 with epoxides, the monoclinic and triclinic polymorphs of [LnIII(NH3-Glu)(ox)]·2H2O, where LnIII = LaIII (I), PrIII (II), NdIII (III), SmIII (IV), EuIII (V), GdIII (VI), TbIII (VII), and DyIII (VIII), NH3-Glu- = NH3+ containing glutamate, and ox2- = oxalate, were synthesized and characterized. Factors determining polymorphic preference, the discrepancy between the two polymorphic framework structures, potential acidic and basic sites, thermal and chemical stabilities, active surface areas, void volumes, CO2 sorption/desorption isotherms, and temperature-programmed desorption of NH3 and CO2 are comparatively presented. Based on the cycloaddition of CO2 with epichlorohydrin in the presence of tetrabutylammonium bromide under solvent-free conditions and ambient pressure, catalytic activities of the two polymorphs were evaluated, and the relationship between polymorphism and catalytic performances has been established. Better performances of the monoclinic catalysts have been revealed and rationalized. In addition, the scope of monosubstituted epoxides was experimented and the outstanding performance of the monoclinic catalyst in the cycloaddition reaction of CO2 with allyl glycidyl ether under ambient pressure has been disclosed.

2.
Inorg Chem ; 63(14): 6239-6247, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38520341

ABSTRACT

Immersing single crystals of (Δ)4-K6[Ir4Zn4O(l-cysteinate)12]·nH2O (K6[1Ir]·nH2O) bearing 12 free carboxylate groups, which was newly prepared from Δ-H3[Ir(l-cysteinate)3], ZnBr2, ZnO, and KOH, in an aqueous solution of lanthanide(III) acetate produced Ln2[1Ir]·nH2O (2Ln; Ln = LaIII, CeIII, PrIII, and NdIII) and Ln0.33[Ln4(OH)4(OAc)3(H2O)7][1Ir]·nH2O (3Ln; Ln = SmIII, EuIII, GdIII, TbIII, DyIII, ErIII, HoIII, TmIII, YbIII, and LuIII) in a single-crystal-to-single-crystal transformation manner. X-ray crystallography showed that the KI ions in K6[1Ir]·nH2O are completely exchanged by the LnIII ions in 2Ln and 3Ln, retaining the 3D hydrogen-bonded framework that consists of the IrIII4ZnII4 complex anions of [1Ir]6-. While 2Ln contained the LnIII ions as isolated aqua species, the LnIII ions in 3Ln existed as cationic cubane clusters of [Ln4(OH)4(OAc)3(H2O)7]5+; these were linked by [1Ir]6- anions through carboxylate groups in a 3D polymeric structure. 3Ln showed magnetic and photoluminescence properties that are characteristically observed for discrete LnIII species in the solid state.

3.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 2): 228-231, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38333134

ABSTRACT

A new lanthanide coordination polymer, poly[[tri-aqua-bis-(µ4-phthalato)(µ3-pyridine-2,5-di-carboxyl-ato)dipraseodymium] monohydrate], {[Pr2(C7H3NO4)2(C8H4O4)(H2O)3]·H2O}n or {[Pr2(phth)2(pydc)(H2O)3]·H2O}n, (pydc2- = pyridine-2,5-di-carboxyl-ate and phth2- = phthalate) was synthesized and characterized, revealing the structure to be an assembly of di-periodic {Pr2(pydc)(phth)2(H2O)3}n layers. Each layer is built up by edge-sharing {Pr2N2O14} and {Pr2O16} dimers, which are connected through a new coordin-ation mode of pydc2- and phth2-. These layers are stabilized by inter-nal hydrogen bonds and π-π inter-actions. In addition, a three-dimensional supra-molecular framework is built by inter-layer hydrogen-bonding inter-actions involving the non-coordinated water mol-ecule. Thermogravimetric analysis shows that the title compound is thermally stable up to 400°C.

4.
ACS Omega ; 9(3): 3988-3996, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284037

ABSTRACT

A series of five isostructural 3D lanthanide-based coordination polymers [LnIII2(H2O)6(glu)(SO4)2]n [Ln = Pr(1), Nd(2), Sm(3), Eu(4), and Gd(5)] was effortlessly obtained within a few minutes via the microwave-heating method. The employment of auxiliary bases, that is, sodium hydroxide, 4,4'-bipyridine, and 1,4-diazabicyclo[2.2.2]octane, led to the formation of the title complex, whereas base-free synthesis yielded a three-dimensional inorganic coordination polymer, [Ln2(H2O)4(SO4)3]n·nH2O, Ln = Nd (2a). The robustness of the synthetic method was illustrated as both microwave-heating and conventional hydrothermal techniques also enabled the formation of a high-crystalline phase-pure complex 1-5. In the structure of 1-5, glutarato (glu2-) and sulfato ligands link dinuclear Ln(III) building units into three-dimensional frames. The glu2- ligands act as tethering linkers, expanding the structure into a neutral 3D coordination network. Hydrogen bonds were found to be the predominant intermolecular interactions in the crystal structures. Photoluminescence of the complex 1-5 was studied.

5.
Environ Res ; 239(Pt 2): 117347, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37821062

ABSTRACT

Controlling the nanoscale synthesis of semiconductor TiO2 on a fixed substrate has fascinated the curiosity of academics for decades. Synthesis development is required to give an easy-to-control technique and parameters for TiO2 manufacture, leading to advancements in prospective applications such as photocatalysts. This study, mixed-phase TiO2(B)/other titania thin films were synthesized on a fused quartz substrate utilizing a modified Chemical vapor depodition involving alkali-metal ions (Li+, Na+, and K+) solution pre-treatment. It was discovered that different cations promote dramatically varied phases and compositions of thin films. The films had a columnar structure with agglomerated irregular-shaped particles with a mean thickness of 800-2000 nm. Na+ ions can promote TiO2(B) more effectively than K+ ions, however Li+ ions cannot synthesize TiO2(B). The amounts of TiO2(B) in thin films increase with increasing alkali metal (K+ and Na+) concentration. According to experimental and DFT calculations, the hypothesized TiO2(B) production mechanism happened via the meta-stable intermediate alkaline titanate transformation caused by alkali-metal ion diffusion. The mixed phase of TiO2(B) and anatase TiO2 on the fixed substrate (1 × 1 cm2) obtained from Na+ pre-treated procedures showed significant photocatalytic activity for the degradation of methylene blue. K2Ti6O12, Li2TiO3, Rutile TiO2, and Brookite TiO2 phase formations produced by K+ and Li + pretreatment are low activity photocatalysts. Photocatalytic activities were more prevalent in NaOH pre-treated samples (59.1% dye degradation) than in LiOH and KOH pre-treated samples (49.6% and 34.2%, respectively). This revealed that our developed CVD might generate good photocatalytic thin films of mixed-phase TiO2(B)/anatase TiO2 on any substrate, accelerating progress in future applications.


Subject(s)
Cardiovascular Diseases , Metals, Alkali , Humans , Azo Compounds , Catalysis , Cations , Lithium , Alkalies
6.
Inorg Chem ; 61(27): 10383-10392, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35763789

ABSTRACT

Inspired by the catalytic potential of lanthanide coordination polymers of 3,3',5,5'-azobenzenetetracarboxylic acid (H4abtc), two new isostructural [Ln2III(Habtc)2(DMSO)4]·DMSO·H2O (LnIII = SmIII (I), EuIII = (II), DMSO = dimethyl sulfoxide) were synthesized and characterized. Their single-crystal structures were elucidated and described. Structural transformations of II in the solid state prompted by ligand substitution and thermal treatment were studied, from which genuine reversible transformation of II to [EuIII(Habtc)(H2O)4]·3H2O (II') and [EuIII(Habtc)(H2O)2]·2H2O (II″) was revealed. This illustrates the rare case of reversible transformation in lanthanide coordination polymers. The transformation between II' and II″ was also investigated. Structural transformations among these frameworks are discussed with regard to the coordination environment of EuIII, coordination modes of Habtc3-, and similarities and disparities in framework architecture and registration. In addition, the catalytic performance of II with and without the prior activation in CO2 cycloaddition reaction with epichlorohydrin was studied in comparison with II' and II″. The excellent performance of II disregarding the activation process has been demonstrated with the maximum turnover number and turnover frequency of 7682 and 1921 h-1, respectively, for the activated II and 7142 and 1786 h-1, respectively, for the nonactivated II. The maintenance of the catalytic efficiency over 10 cycles of the catalysis and the regeneration process is illustrated and discussed with respect to structural transformation.

7.
Chemosphere ; 305: 135330, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35724718

ABSTRACT

To compare efficiency of disulfide and thiol groups in removing mercury from aqueous medium without noteworthy influence from structural differences, a series of new [LnIII(dtba)1.5(H2O)2] (LnIII = EuIII (I), GdIII (II) and TbIII (III), H2dtba = 4,4'-dithiobenzoic acid) were synthesized and characterized. The single crystal structure of I was elucidated and is described. Reaction of II with hydrazine gave IISH containing disulfide and thiol groups. Experimental data confirmed the preserved framework structure and the co-existing of disulfide and thiol groups in IISH. Robustness of II and IISH over a wide range of pH (2-10) was confirmed and their mercury removal performances at different pH were evaluated in terms of removal efficiencies (%R), equilibrium uptake capacities (qe) and distribution constant (Kd). The dependence of these parameters on pH is reported. The best values of %R, qe and Kd could be achieved at pH 10 at which surfaces of the adsorbents were negatively charged; 86%R, 429 mg g-1, and 6.04 × 103 mL g-1 (II), and 98%R, 490 mg g-1 and 5.08 × 104 mL g-1 (IISH). At pH 7, influences of the initial concentration of mercury on performances of the adsorbents as well as the adsorption isotherms and kinetics were examined from which the better performance of IISH has been concluded. The characterization of the adsorptions by the Langmuir model and the pseudo-second-order kinetic as well as their excellent consistency with the experimental data are included. At neutral pH, selectivity to the adsorption of mercury and tolerance to common anions were illustrated. The better affinity between mercury and thiol group and therefore its contribution to the better performance of IISH was then ascertained by a computational study.


Subject(s)
Lanthanoid Series Elements , Mercury , Water Pollutants, Chemical , Adsorption , Disulfides , Hydrogen-Ion Concentration , Kinetics , Mercury/chemistry , Polymers , Sulfhydryl Compounds/chemistry , Water Pollutants, Chemical/analysis
8.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 5): 536-539, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35547790

ABSTRACT

A new coordination polymer, poly[(acetato)aqua(µ3-phthalato)europium(III)], [Eu(C8H4O4)(CH3O2)(H2O)] n or [EuIII(phth)(OAc)(H2O)] (phth2- = phthalate and OAc- = acetate) was synthesized and characterized, revealing it to be a supra-molecular assembly of one-dimensional [EuIII(phth)(OAc)(H2O)] chains. Each chain is built up of edge-sharing distorted tricapped trigonal-prismatic TPRS-{EuIIIO9} building motifs and assembled in a regular fashion through hydrogen-bonding and aromatic π-π inter-actions. The fully deprotonated phth2- ligand was shown to be an effective sensitizer, promoting the characteristic 5 D 0→7 FJ (J = 1-4) emissions of EuIII even in the presence of the non-sensitizing OAc- group.

9.
Inorg Chem ; 60(16): 12555-12564, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34337942

ABSTRACT

Treatment of Na3[Au3Co2(d-pen)6] (Na3[1]; d-H2pen = d-penicillamine) with M(OAc)2 (M = NiII, MnII) in water gave ionic crystals of [M(H2O)6]3[1]2 (2M) in which [1]3- anions are hydrogen-bonded with [M(H2O)6]2+ cations to form a 3D porous framework with a porosity of ca. 80%. Soaking crystals of 2Ni in its mother liquor afforded crystals of [Ni(H2O)6]2[{Ni(H2O)4}(1)2] (3Ni) in which [1]3- anions are connected to trans-[Ni(H2O)4]2+ and [Ni(H2O)6]2+ cations through coordination and hydrogen bonds, respectively, to form a 1D porous framework with a porosity ca. 60%. Further soaking crystals led to [{Ni(H2O)4}3(1)2] (4Ni), in which [1]3- anions are connected to cis-[Ni(H2O)4]2+ and trans-[Ni(H2O)4]2+ cations through coordination bonds in a dense framework with a porosity of ca. 30%. A similar two-step crystal-to-crystal transformation mediated by solvent proceeded when crystals of 2Mn were soaked in a mother liquor. However, the transformation of 2Mn generated [{Mn(H2O)4}(H1)] (4'Mn) as the final product, in which [H1]2- anions are connected to cis-[Mn(H2O)4]2+ cations through coordination bonds in a very dense framework with a porosity ca. 5% by way of [Mn(H2O)6]2[{Mn(H2O)4}(1)2] (3Mn), which is isostructural with 3Ni. While all the compounds adsorbed H2O and CO2 depending on the degree of their porosity, unusually large NH3 adsorption capacities were observed for 4Ni and 4'Mn, which have dense frameworks.

10.
Inorg Chem ; 59(5): 3053-3061, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32077691

ABSTRACT

The new nanoporous framework [Gd4(di-nitro-BPDC)4(NO2)3(OH)(H2O)5]·(solvent) (I; di-nitro-BPDC2- = 2,2'-dinitrobiphenyl-4,4'-dicarboxylate) has been designed and synthesized through a simple one-pot reaction. In addition to its exceptional thermal and water stabilities, I exhibited multifunctional properties. A sudden CO2 uptake to a maximum of 4.51 mmol g-1 (195 K and 1 bar) with notable selectivity over O2 and N2 (CO2/O2 = 39 at 195 K and 0.10 bar, CO2/N2 = 46 at 195 K and 0.10 bar) and an isosteric adsorption enthalpy of 20.7(4) kJ mol-1 have been revealed. Depending on the temperature and humidity, I also showed distinguished superprotonic conductivities with a maximum value and activation energy of 6.17 × 10-2 S cm-1 (55 °C, 99 RH%, and 1 V AC voltage) and 0.43 eV, respectively. With respect to the linear dependence of conductivities on both temperature (25-55 °C at 99 RH%) and humidity (55-99 RH% at 25 °C), the potential of I in temperature and humidity sensing was evaluated, disclosing an excellent sensing resolution and exceptional accuracy, precision, and repeatability for the measurements.

SELECTION OF CITATIONS
SEARCH DETAIL