Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21264981

ABSTRACT

Protection offered by COVID-19 vaccines wanes over time, requiring an evaluation of different boosting strategies to revert such a trend and enhance the quantity and quality of Spike-specific humoral and cellular immune responses. These immunological parameters in homologous or heterologous vaccination boosts have thus far been studied for mRNA and ChAdOx1 nCoV-19 vaccines, but knowledge on individuals who received a single dose of Ad26.COV2.S is lacking. We studied Spike-specific humoral and cellular immunity in Ad26.COV2.S vaccinated individuals (n=55) who were either primed with Ad26.COV2.S only (n=13), or boosted with a homologous (Ad26.COV2.S, n=28) or heterologous (BNT162b2, n=14) second dose. We compared our findings with the results found in individuals vaccinated with a single (n=16) or double (n=44) dose of BNT162b2. We observed that a strategy of heterologous vaccination enhanced the quantity and breadth of both, Spike-specific humoral and cellular immunity in Ad26.COV2.S vaccinated. In contrast, the impact of homologous boost was quantitatively minimal in Ad26.COV2.S vaccinated and Spike-specific antibodies and T cells were narrowly focused to the S1 region. Although a direct association between quantity and quality of immunological parameters and in vivo protection has not been demonstrated, the immunological features of Spike-specific humoral and cellular immune responses support the utilization of a heterologous strategy of vaccine boost in individuals who received Ad26.COV2.S vaccination.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21259831

ABSTRACT

BackgroundThe pandemic of coronavirus disease-19 (Covid-19) continues to afflict the lives and livelihoods of many as global demand for vaccine supply remains unmet. MethodsPhase 1 of this trial (N=42) assessed the safety, tolerability and immunogenicity of ascending levels of one-dose ARCT-021, a self-amplifying mRNA vaccine against Covid-19. Phase 2 (N=64) tested two-doses of ARCT-021 given 28 days apart. Both young and older adults were enrolled. The primary safety outcomes were local and systemic solicited adverse events (AEs) reported immediately and up to 7 days post-inoculation and unsolicited events reported up to 56 days after inoculation. Secondary and exploratory outcomes were antibody and T cell responses to vaccination, respectively. ResultsARCT-021 was well tolerated up to one 7.5 g dose and two 5.0 g doses. Local solicited AEs, namely injection-site pain and tenderness, as well as systemic solicited AEs, such as fatigue, headache and myalgia, were more common in ARCT-021 than placebo recipients, and in younger than older adults. Seroconversion rate for anti-S IgG was 100% in all cohorts except for the 1 g one-dose in younger adults and the 7.5 g one-dose in older adults, which were each 80%. Neutralizing antibody titers increased with increasing dose although the responses following 5.0 g and 7.5 g ARCT-021 were similar. Anti-S IgG titers overlapped with those in Covid-19 convalescent plasma. ARCT-021 also elicited T-cell responses against the S glycoprotein. ConclusionTaken collectively, the favorable safety and immunogenicity profiles support further clinical development of ARCT-021.

SELECTION OF CITATIONS
SEARCH DETAIL
...